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Capitulo 1

Introduccion

En esta tesis se estudian dos de los problemas fundamentales de la navegacion de robots
autébnomos, el problema de la localizacién y el de la construccién automatica de mapas
del entorno. Proponemos abordar ambas cuestiones desde un punto de vista de estimacion
bayesiana del estado y de busqueda del modelo de maxima verosimilitud, aplicando técnicas
novedosas de modelado y de computacion.

Para ilustrar el alcance de estas técnicas, describimos a continuacion el comportamiento
de un robot guia de un museo. Esta tarea es un ejemplo tipico de aplicacion de los robots
moviles.

El robot guia se encuentra localizado en una determinada posicién de un gran
salon en donde se distribuyen diversas obras, no solo en las paredes sino también
por el centro del mismo. Una pantalla tactil situada sobre el robot permite

a los usuarios escoger la obra a la que se desea ir. Alguien pulsa la obra
situada al otro extremo del salén y el robot, después de planificar una trayectoria
factible que le llevara de la posicion actual a la posicidn objetivo, comienza a
moverse, invitando con un sintetizador voz a que le sigan. Utiliza los lectores
de ultrasonidos y de laser para obtener lecturas de alcance del entorno, que
procesa para moverse evitando obstaculos y para actualizar de forma correcta
su localizacion, compensando los errores introducidos por la odometria. Al
comenzar a moverse, el robot despierta una gran curiosidad y bastantes personas
se agrupan asu alrededor, produciendo lecturas errébneasy bloqueando el camino
gue se habia calculado previamente. Elrobot corrige la trayectoria, encontrando
un camino alternativo y se mueve para evitar los nuevos obstaculos, llegando
al objetivo sin mas problemas. Durante el camino ha ido anunciando las obras
gue dejaba a derecha e izquierda. Una vez en el objetivo se detiene, listo para
volver a comenzar.

19



20 CAPITULO 1. INTRODUCCION

[ Lectura
No lectura

Figura 1.1: Ejemplo de lecturas de sensores de ultrasonidos en una habitacion.

En este ejemplo, el robot es capaz de contestar en cada momento a las siguientes tres
preguntas: ¢dénde estoy? ¢ hacia donde debo moverme? ¢como llegaré hasta alla?

Estas tres preguntas sugieren tres problemas fundamentales de la navegacion: el pro-
blema de la localizacién, el problema de la planificacién de conductas (trayectorias) y el
problema de la utilizacion de esquemas de actuacion.

En el problema de localizacion, en concreto, el robot se mueve en un entorno de oficina
Cuyo mapa se conoce de antemano, y cuenta con unos sensores de ultrasonidos con los
gue obtiene una percepcion local (y ruidosa) del entorno en el que se encuentra (ver figura
1.1). También existen en el robot unos contadores mecanicos que proporcionan informacién
métrica (también ruidosa) de los desplazamientos que reatiraretrig.

Se trata de encontrar, en todo momento, la posicién del robot dentro del mapa conocido
a partir de la informacién de las lecturas del sonar y de las lecturas de odometria. En la
version mas complicada del problemajdaalizacion global se debe estimar la posicion
del robotsin conocer su posicion inicialFrente a este problema, el delguimiento de la
localizaciénes mas sencillo, ya que se conoce a priori la posicion del robot.

Las técnicas de localizacién deben tratar correctamente el problema de los objetos no
modelados en el entorno. Normalmente, el mapa que modela el entorno representa Unica-
mente las caracteristicas principales del mismo. Sin embargo, cuando el robot evoluciona
por dicho entorno sus sensores se veran afectados por pequefios objetos no modelados (mobi-
liario, por ejemplo), por caracteristicas que han cambiado (puertas que se abren o se cierran)
0 por personas que se mueven en los alrededores. Las técnicas de localizacién deben ser lo
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Figura 1.2: Muestras que representan la distribucién de probabilidad de la posicién del robot.

suficientemente robustas para contemplar estas diferencias.

En el problema de la construccién automatica de mapas del entorno el robot explora un
entorno y almacena las lecturas de los sensores de ultrasonidos y las lecturas de odometria.
Una vez realizada la exploracion, se debe determinar el modelo del entorno que mejor se
adapta a las lecturas recogidas. Normalmente, en el mapeado también hay que resolver el
problema de localizacion, ya que no se conocen las posiciones desde las que el robot ha
realizado las lecturas.

En esta tesis se presenta una solucién al problema de la localizacion global utilizando
la estimacién bayesiana. Este paradigma permite derivar una funcion de probadilidad
posterioride la posicion del robot, dado un mapa conocido del entorno, una secuencia de
lecturas de los sensores del robot y una secuencia de sus movimientos. Las posiciones
mas probables seran aquellas que hagan mas verosimiles dichas secuencias de lecturas y
movimientos, dado el mapa del entorno.

Uno de los problemas mas graves de la aplicacion de este enfoque es que, debido a
los problemas de obstaculos no modelados y de ambigliedad en la percepcién del entorno,
la funcion de probabilidad a posteriori es muy compleja y no puede aproximarse a una
distribucion normal (frecuentemente es multimodal). La solucidn novedosa que aportamos
es la utilizacion del filtrdbootstrapque representa la funcién de probabilidad mediante un
conjunto de muestras extraidas de la misma. Por ejemplo, en la figura 1.2, se representan
todas las muestras que definen la probabilidad de localizacion a posteriori en tres instantes
de tiempo de un recorrido del robot por un pasillo.

Para calcular la funcién de probabilidad, y aplicar el algoribootstrapes necesario
formular un modelo de observacion, que define la verosimilitud de las lecturas obtenidas
por los sonares dada una posicion en un determinado entorno, y un modelo de movimiento
del robot. Presentamos en la tesis un modelo novedoso de observacion, basado en un
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Figura 1.3: PIXIE en un pasillo.

modelo realista del comportamiento del sensor de ultrasonidos, que tiene como caracteristicas
principales la robustez frente a obstaculos no modelados y la alta efectividad en situaciones
gue otros modelos mas simples perciben como ambiguas.

En lo que se refiere al problema del mapeado, proponemos la utilizacién de modelos pa-
ramétricos del entorno y de un algoritmoattimacién-maximizacigiM) para obtener los
parametros del mapa que maximizan la verosimilitud de las lecturas. Se utiliza como método
de estimacion el algoritmo de localizacién, al que se aflade una fase posterior de suavizado
de las muestras para reducir la ambigiiedad en situaciones ruidosas. La maximizacion se
utiliza mediante un sencillo algoritmo de busqueda adaptativa.

Se han probado los métodos con datos obtenidos de un simulador propio (figura 1.4) y de
PIXIE (figura 1.3), un robot mévil RWI B-21 con un anillo de 24 sensores de ultrasonidos.

Una de las caracteristicas principales del simulador construido es su flexibilidad. Por
ejemplo, es posible obtener datos de distintos modelos de entorno, modificar el comporta-
miento de las lecturas de los sensores de ultrasonidos, introduciendo distintos tipos de ruido
aleatorio, o afiadir ruido en las lecturas de odometria. La utilizacion del simulador permite,
en la fase de disefio de los algoritmos, controlar mejor sus distintas variables y proporciona
una enorme flexibilidad por la posibilidad de repetir de forma controlada los experimentos.
El robot PIXIE se ha utilizado para tomar datos reales con los que validar el funcionamiento
correcto de los algoritmos propuestos.

Tanto elfiltrobootstrapcomo los enfoques bayesianos se han popularizado recientemente
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Figura 1.4: Simulador con el que se ha realizado parte de la experimentacion.

en la comunidad cientifica dedicada a la Vision Artificial. Muchas de las ideas aportadas en
esta tesis han surgido de la adaptacion de técnicas recientes de este campo a los métodos de
navegacion.

El resto de la tesis se organiza de la siguiente forma. El capitulo 2 presenta los pro-
blemas de localizaciéon y mapeado, haciendo un repaso de las distintas técnicas propuestas.
Se presenta también en el capitulo una formalizacién de los problemas en términos de es-
timacién bayesiana que proporciona el marco conceptual del resto de la tesis. El capitulo
3 presenta la propuesta de modelo del sensor, junto con experimentos que muestran su co-
rrecto funcionamiento. En el capitulo 4 se proponen los modelos necesarios para utilizar
el enfoque bayesiano. Estos modelos son los mapas paramétricos del entorno, el modelo
de observacion y el modelo de movimiento. El capitulo 5 esta dedicado a la presentacion
del filtro bootstrapy a su aplicacién a la solucién del problema de localizacion global. Por
ultimo, el capitulo 6 propone un algoritmo EM para resolver el problema del mapeado. En
este capitulo se presenta una técnica para suavizar la probabilidad asociada a las muestras
resultantes del filtrbootstrapy se utiliza una busqueda adaptativa para encontrar el modelo
paramétrico que mejor se adapta a las lecturas obtenidas. En el capitulo 7 se resumen todas
las aportaciones de la tesis y se comentan posibles lineas futuras de trabajo.

Los apéndices amplian algunos conceptos importantes y presentan trabajos previos re-
lacionados con el tema de la tesis. El primero de ellos describe el método estadistico del
muestreo por rechazo para muestrear funciones de densidad. El apéndice B describe el algo-
ritmo EM. Los apéndiceC y Dpresentan trabajos previos al desarrollo del cuerpo central de
la tesis, relacionados con las conductas y las trayectorias de los robots méviles, y que sirvie-
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ron para plantear algunas de las problematicas de las que han surgido esta tesis. En concreto,
el apéndice 3 propone la utilizacion de algoritmos genéticos para resolver el problema de la
planificacion de trayectorias, y el apéndice 4 utiliza estas trayectorias como modelos de los
gue extraer caracteristicas comunes que definen conductas locales de navegacion, utilizando
el andlisis de componentes principales (PCA).



Capitulo 2

Localizacion y mapeado en entornos
de oficina

La localizacion de un robot mévil en un entorno conocido es uno de los problemas funda-
mentales de la robotica movil, junto con la construccion automatica de mapas del entorno.
Se han propuesto un gran nimero de modelos, enfoques y técnicas para resolver ambos
problemas. Muchas de estas técnicas presentan solucdrescque so6lo son Utiles en
situaciones muy especificas.

Frente a este tipo de técnicas, han aparecido recientemente algunas propuestas generales
gue utilizan enfoques bayesianos, como por ejemplo los modelos de Markov o las redes
bayesianas.

Presentamos en este capitulo una formalizacién del problema de la localizacion y del
mapeado que unifica las propuestas recientes y que proporciona una notacién uniforme y
coherente. Esta formalizacion sirve de marco conceptual en el que es posible desarrollar
distintas implementaciones y técnicas.

Los elementos fundamentales de la formulacion de ambos problemas son la definicién
de unmodelo de observacidque proporciona la probabilidad de las lecturas de los sensores
dada una posicién en el entorno definido y la definicibn denodelo de movimientque
proporciona la probabilidad de la siguiente posicion del robot, dada la posicién actual y la
accion ejecutada.

En capitulos siguientes presentaremos propuestas concretas para ambos modelos y al-
goritmos y técnicas de localizacién y mapeado basadas en esta formalizacion.

25
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2.1 Introduccidn

Para navegar de forma robusta en entornos de oficina, un robot debe saber donde se encuentra
dentro de ese entorno. En los Ultimos afios viene existiendo un gran interés en el desarrollo
de algoritmos para estimar la localizacion del robot a partir de los datos percibidos por sus
sensores. En el contexto de los robots méviles, el problema general de la localizacion puede
ser formulado de la siguiente forma.

Dado: Un modelo del entorno, como una descripcién geométrica, un mapa topoldgico o
una rejilla de ocupacién.

Tarea: Estimar lalocalizacion del robot en el modelo basandose Unicamente en observacio-
nes efectuadas por el robot. Dichas observaciones suelen consistir en informacion de
odometria acerca de los movimientos realizados por el robot y en informacion de dis-
tancias a los obstaculos mas cercanos obtenidas mediante sensores de alcance (sonar,
laser}. Las observaciones también pueden consistir en imagenes obtenidas por una
camara montada en el robot, en cuyo caso estamos ante un probléalidacion
visual

Un problema fuertemente ligado al de localizacion es el de la construccion automatica
del mapa del entorno. También en los Ultimos afios se han desarrollado métodos para estimar
y mantener modelos del entorno de forma autonoma. Este problema se puede formular de
la siguiente forma.

Dado: Una serie de observaciones realizadas por el robot evolucionando por el entorno.
Las observaciones, al igual que en el problema de la localizacion, suelen consistir en
informacién de odometria e informacion de lecturas de alcance.

Tarea: Construir un modelo del entorno que pueda ser utilizado por los algoritmos de
localizacion. Posibles modelos son descripciones geométricas del entorno, mapas
topolégicos o rejillas de ocupacion.

Los modelos y métodos propuestos para resolver los problemas de localizaciéon y ma-
peado deben tratar con ciertas limitaciones y restricciones practicas del funcionamiento de
los robots méviles. Algunas de ellas son las siguientes.

1. Localidad de los sensoresEl rango de percepcion de la mayoria de sensores (ultra-
sonidos, laser, cAmaras) esta limitado a una zona pequefia alrededor del robot. Para
adquirir informacion global, el robot debe explorar activamente su entorno.

1Es importante resaltar que solo se dispone de informacion local sobre la posicion del robot. Evidentemente,
si se contara con informacién global sobre su posicion (mediante un sistema GPS, por ejemplo), el problema de
la localizacion no existiria.
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2. Ruido en los sensoreslLas observaciones realizadas por los sensores son normal-
mente ruidosas, y la distribucion estadistica de este ruido no suele ser sencilla de
modelar.

3. Ruidoenlaposicién.Los movimientos del robot no suelen ser exactos, produciéndose
los denominados errores de odometria. Estos errores son, ademas, acumulativos con
la distancia recorrida. Por ejemplo, pequefios errores en la rotacién del robot pueden
tener efectos importantes en la estimacion de los movimientos de traslacion y en la
determinacion de la posicion final del robot.

4. Entornos complejos y dinAmicos.Los entornos de oficina en los que evoluciona el
robot suelen ser complejos y dinamicos, haciendo practicamente imposible mantener
modelos consistentes de los mismos.

5. Necesidad de tiempo realLos requisitos de la aplicacion (control de un robot movil)
obligan a procesar la informacién en un tiempo real. Esto limita la complejidad del
procesamiento realizado por los métodos de localizacion, asi como los modelos del
entorno.

En los siguientes apartados revisaremos los distintos aspectos de los problemas de locali-
zacion y mapeado. Comenzaremos estudiando los distintos modelos del entorno propuestos
en laliteratura, a continuacion presentaremos las aproximaciones al problema de la localiza-
cion y al problema del mapeado. Se concluira el capitulo definiendo formalmente el marco
de estimacion bayesiana, aplicado tanto a localizacion como a mapeado.

2.2 Modelos del entorno

Un elemento fundamental de la localizacion y el mapeado es el modelo de representacion
del entorno. Un modelo o mapa del entorno es una abstraccién con la que se representan
Unicamente aquellas caracteristicas del entorno que se consideran (tiles para la navegacion
o la localizacion del robot. Al realizar esta abstraccion se desechan caracteristicas de grano
fino que no se consideran utiles, debido a que pueden ser demasiado variables o no pueden
ser detectadas con fiabilidad por los sensores.

La utilidad principal de un modelo del entorno es proporcionar el elemento fundamental
para la localizacion del robot. En general, los algoritmos de localizacion suelen comparar
las lecturas obtenidas por los sensores del robot con el modelo del entorno, actualizando
la posicion del robot de forma acorde con el resultado de esta comparacion. La forma de
realizar la comparacién depende totalmente del tipo de modelo de entorno y de la propuesta
realizada.
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Se han desarrollado dos paradigmas fundamentales de modelado de los entornos de ofi-
cina: modelos métricos y modelos topoldgicos. A su vez, los modelos métricos pueden
dividirse en modelos basados en rejillas y en modelos geométricos. En los siguientes apar-
tados se revisaran los modelos de entorno mas utilizados en la literatura, analizando las
caracteristicas y suposiciones de cada enfoque.

2.2.1 Mapas topoldgicos

La idea central de los mapas topoldgicos es representar las caracteristicas esenciales del
entorno percibidas por el robot mavil utilizando un grafo como un modelo de alto nivel. Los
nodos se utilizan para representar lugares del entorno y los arcos caminos entre los luga-
res. Los lugares constituyen zonas del entotandmark$ con caracteristicas sensoriales
distinguibles de forma absoluta, o respecto a sus nodos vecinos.

Los nodos corresponden a la unidad elemental de localizacién, de manera que toda una
zona geomeétrica del mapa real se representa por un tnico lugar. A partir del mapa topolégico
no es posible distinguir localizaciones mas finas que las representadas por los lugares.

Veamos, como ejemplo, la propuesta de mapas topoldgicos de Kuipers (Kuipers y Byun
1991)(ver figura 2.1).

Los nodos corresponden a puntos distintivos del entorno y los arcos a caminos recorridos
por el robot. Una posicién del entorno correspondiente a un nodo debe distinguirse local-
mente de su vecindad mediante algun criterio definible en términos de los datos sensoriales.
En el caso de los experimentos realizados por Kuipers, la funcion de distincion calcula el
namero de objetos cercanos que se encuentran a igual distancia del robot.

Los arcos entre los nodos representan caminos que se han seguido para llegar de un nodo
a otro utilizando una determinada estrategia de control Isegl(r centro de pasillseguir
pared a la derecha seguir pared a la izquierda

Los mapas topolégicos han sido utilizados, con mltiples variantes, a lo largo de los
ultimos afios (Mataric 1992; Pierce y Kuipers 1994; Kortenkamp y Weymouth 1994; Shatkay
y Kaelbling 1997; Nourbakhsh, Powers, y Birchfeild 1995; Ryu y Yang 1988; Koenig y
Simmons 1998; Thrun 1998; Thrun, Burgard, y Fox 1998).

Un inconveniente de los mapas topolégicos es que la necesidad de distincion sensorial
entre lugares hace imposible larepresentacién de zonas abiertas (habitaciones grandes, halls)
en las que el alcance limitado de los sensores no obtiene informacion.

Otro punto débil es que la definicidn de lugares y la conexidn entre los mismos es muy
dependiente de la aplicacion, no utilizandose normalmente ningun criterio formal para su
construccion.

Por ultimo, como se puede comprobar en el ejemplo de la figura 2.1, los mapas cons-
truidos dependen excesivamente de la historia de las percepciones del robot al construirlos
(por ejemplo, el arco entr@l y P2 esta etiquetadseguir pared izquierd@orque esa es
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Figura 2.1: Ejemplo de mapa topoldgico de Kuipers.

precisamente la conducta local que el robot siguié para ir de un nodo a otro). Esto los hace
muy sensibles a la aparicion de elementos no modelados (personas, obstaculos imprevistos)
que proporcionan informacion sensorial muy distinta de la modelada, haciendo que el robot
pierda su localizacién.

Por otro lado, los modelos topolégicos proporcionan ventajas a la hora de realizar una
planificacion de la trayectoria del robot, facilitan la interfaz con planificadores simbdli-
COos y proporcionan un interfaz mas natural para la interacciéon con instrucciones humanas
(posibilitan érdenes del tiptr a la habitacion A").

2.2.2 Rejillas de ocupacion

Las rejillas de ocupacion, inicialmente propuestas por Moravec y Elfes (Moravec y Elfes
1985), discretizan el entorno en celdillas de igual dimensiéon. Cada celdilla mantiene la
probabilidad de que la zona del entorno asociada a ella esté ocupada. En la figura 2.2 se
muestra un ejemplo de una rejilla de ocupacion.

Es posible utilizar rejillas de ocupacién definidas por el usuario, pero lo usual es que sea
el propio robot movil el que realize la construccion de la rejilla de forma auténoma, mediante
algun algoritmo de exploracion (Elfes 1987; Weigl, Siemiatkowska, Sikorski, y Borkowski
1993; Thrun, Burgard, y Fox 1998).

Las rejillas de ocupacion se han utilizado desde entonces en numerosos enfoques de
localizacion (Matthies y Elfes 1988; Courtney y Jain 1994; Schiele y Crowley 1994; Stevens,
Stevens, y Durrant-Whyte 1995; Oriolo, Vendittelli, y Ulivi 1995; Daniel Pagac 1996;
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Figura 2.2: Ejemplo de rejilla de ocupacion (tomado de (Thrun, Burgard, y Fox 1998)).

Yamauchi 1996) normalmente para alinear mapas locales construidos mediante los datos de
los sensores con el mapa de ocupacion global.

En los udltimos afios ha resurgido el interés en las rejillas de ocupacion al aparecer
algoritmos que permiten manejar el problema de los errores de odometria en la construccion
de rejillas de entornos de gran tamaiio (ver (Thrun 1998; Thrun, Burgard, y Fox 1998)).

2.2.3 Modelos geométricos

Los modelos geométricos definen el entorno mediante sus caracteristicas geométricas (dis-
tancias, dimensiones de los elementos que lo componen, posiciones absolutas). La ventaja
principal de estos modelos es que, si se utilizan junto con un buen modelo del sensor, es
posible simular los datos que los sensores del robot obtendrian en cualquier posicion del
entorno. Esto hace posible comparar los datos percibidos por el robot con los datos que
se obtendrian en posiciones candidatas, calculandose una actualizacién de la probabilidad
asociada a cada posicion.

Existen distintos tipos de modelos geométricos. Un primer enfoque define el entor-
no mediante un conjunto de caracteristicas geométricas (segmentos de rectas, esquinas) y
mediante las relaciones geométricas entre ellas (distancia, posicion, etc.). Ejemplos de utili-
zacion de estos modelos son los trabajos (Drumheller 1987; Neira, Horn, Tardos, y Schmidt
1997; Ohya, Nagashima, y Yuta 1994; Chong y Kleeman 1997; Leonard, Durrant-Whyte, y
Cox 1992; Cox 1991; Ayache y Faugeras 1989).
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Otro enfoque, los modelos geométricos basados en caracteristicas, se relaciona directa-
mente con implementaciones de modelos de sensor en las que se utilizan estas caracteristicas
geométricas como elementos base del modelado (Barshan y Kuc 1990; Kuc 1990; McKe-
rrow 1993). En la figura 2.3 se muestra un ejemplo de mapa del entorno construido a base
de las caracteristicas geométricas definidas por Leonard (Leonard y Durrant-Whyte 1992):
esquinas, aristas y segmentos de rectas.

.

1 B

L

Figura 2.3: Ejemplo de modelo geométrico del entorno. Las caracteristicas geométricas
usadas en el modelo soasquinasaristasy segmentos de rectas

Otro conjunto de modelos geométricos definen el entorno mediante un mapa CAD del
mismo (Burgard, Fox, Henning, y Schmidt 1996; Burgard, Cremers, Fox, Hahnel, Lakeme-
yer, Schulz, Steiner, y Thrun 1998). Un mapa CAD refleja los elementos del entorno que
se desea modelar, recogiendo sus dimensiones y posiciones. En la figura 2.4 se muestra un
ejemplo de mapa CAD de un entorno.

Cuanto mas detallado sea el modelo CAD mayor calidad tendran las simulaciones de
las lecturas de los sensores del robot en las posiciones candidatas. Evidentemente, para
obtener simulaciones de lecturas de buena calidad es necesario utilizar un buen modelo del
sensor. Burgard (Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y Thrun
1998) propone utilizar una simulacién sencilla de sensores de rango, obteniendo la distancia
angular con los obstaculos del entorno en una posicion determinada.

Por altimo, los trabajos (Weib, Wetzler, y Puttkamer 1994; Lu y Milios 1994; Gutmann
y Schlegel 1996; Lu y Milios 1997) proponen utilizar como modelo del entorno los propios
datos percibidos por los sensores del robot (figura 2.5), aplicandoles el minimo tratamiento
posible (siacaso, una correccion de odometria). El problema principal de esta representacion
es gue no se realiza ningun filtrado para eliminar ruido procedente de lecturas erréneas, por
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[ 1

Figura 2.4: Ejemplo de modelo CAD del entorno.

Figura 2.5: Ejemplo de modelo sensorial del entorno, en el que el entorno es el mismo que
el modelado por las figuras 2.3y 2.4.
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lo que sélo es aplicable a sensores muy precisos (sensores de alcance por laser).

2.3 Aproximaciones al problema de la localizacion

Una vez revisados los principales tipos de modelos de entorno, pasamos a tratar el problema
de la localizacion. Localizacién es el proceso de estimar la posicion de un robot mévil en
un mapa que determina un sistema de coordenadas globales. Las fuentes de informacién
disponibles para resolver el problema son las observaciones del entorno realizadas por el
robot y sus lecturas de odometria (incrementos de posicion registrados por el robot).

Otros enfoques mas aplicados utilizan elementos externos incorporados artificialmente
al entorno (como reflectores, marcas visuales, lineas, etc.) para triangular la posicion del
robot (ver el informe de Borenstein (J. Borenstein 1996) para un exhaustivo repaso de este
tipo de técnicas). Descartamos la utilizacion de estos enfoques por la estructuracion artificial
gue imponen en el entorno.

Es posible identificar dos variantes del problema general, dependiendo de si se supone
conocida la posicion inicial del robot o de sila desconocemos. Los enfoqieesatizacion
local suponen conocida la posicién del roboty realizan un seguimigati{ng) de lamisma
para estimar la siguiente posicion. Por otro lado, los enfoquesdkzacion globalntentan
estimar la posicion del robot, sin tener un conocimiento a priori de la misma, utilizando la
informacion de las lecturas en varios instantes de tiempo.

Revisaremos en este apartado distintas aproximaciones al problema de localizacion.

2.3.1 Localizacion local

El problema de la localizacién local se puede formular como el problema de realizar un
seguimiento del estado del robot que compense los errores de odometria mediante el uso de
observaciones del entorno.

Métodos basados efandmarks

Un conjunto de técnicas atacan el problema mediante la identificaciéandmarksen

las observaciones. Las posiciones de ektodmarksson conocidas, y con ellas puede
corregirse la posicion del robot. Ejemplos de algoritmos que han implementado con éxito
estas técnicas son (Kuipers y Byun 1991; Kortenkamp y Weymouth 1994; Nourbakhsh,
Powers, y Birchfeild 1995; Koenig y Simmons 1998; Ryu y Yang 1988).
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Métodos basados en emparejamiento de caracteristicas

Se han propuesto distintos algoritmos basados en el siguiente esquema genérico: (1) estimar
caracteristicas locales a partir de las Gltimas observacionesy (2) encontrar la mejor correccion
a la posicién actual del robot maximizando la correlacion entre las caracteristicas locales y
el mapa del entorno.

Por ejemplo, Weib (Weib, Wetzler, y Puttkamer 1994) construye histogramas locales a
partir de barridos de sensores laser, que después se correlacionan con histogramas almace-
nados. Yamauchi (Yamauchi 1996) aplica una técnica similar, pero utilizando rejillas de
probabilidad (Moravec y Elfes 1985) como elementos de emparejamiento.

Métodos basados en el filtro de Kalman

El enfoque mas usado para resolver el problema de la localizacion local es la utilizacion
delfiltro de Kalman(Sorenson 1970), una conocida técnica para integrar informacion en el
tiempo. Este método fue inicialmente propuesto por Kalman (Kalman 1960) para estimar

el estado de un proceso dinamico lineal arbitrario. Cada variable que describe el estado del
proceso se representa mediante una distribuciéon normal. Los parametros de la distribuciéon
(media y varianza) se actualizan siempre que se aplica un comando de control al sistema y
siempre que los sensores realizan nuevas mediciones. Estas dos actualizaciones del estado
se suelen denominaredicciény correccion En la fase de prediccion, se modela el cambio

del estado debido a las acciones de control. Enlafase de correccion se combina la estimacion
del estado producida por la fase anterior con las lecturas realizadas por los sensores. Tal y
como se verd, estas dos fases también estan presentes en la estimacion bayesiana. De hecho,
se ha demostrado que el filtro de Kalman puede verse como un caso particular del enfoque
de estimacion bayesiana (Barker, Brown, y Martin 1994).

La aplicacion del filtro de Kalman a la localizacion de robots mdviles estima la posi-
cion (x, y, 9) del robot en el entorno mediante una distribuciéon normal. La covarianza de
esta distribucion representa la incertidumbre local en la posicion estimada. Siempre que se
mueve el robot, la posicién estimada se desplaza segun la distancia medida por la odometria
del robot. Las observaciones realizadas por los sensores se utilizan para actualizar la distri-
bucién de probabilidad de la localizacién, buscando la nueva distribucion que maximiza la
verosimilitud de las lecturas.

Lamayoria de algoritmos que aplican el filtro de Kalman utilizan modelos de movimiento
similares, pero difieren en como se calcula la verosimilitud de las lecturas de los sensores.
Existen dos grupos principales de técnicas: basadas en caracteristicas y basadas en rejillas
de ocupacién.

Entre las primeras, Leonard (Leonard, Durrant-Whyte, y Cox 1992) busca emparejar
caracteristicas extraidas de las lecturas de sonar con caracteristicas predichas a partir de un
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mapa geométrico del entorno. Las caracteristicas son planos, cilindros y esquinas basados
enregiones de profundidad constargstimadas a partir de las lecturas del sonar. Cox (Cox
1991) utiliza distancias medidas por sensores de rango de infrarrojos y las compara con
una descripcién del entorno basada en segmentos de rectas. Gutmann (Gutmann y Schlegel
1996) extiende este trabajo a modelos del mundo aprendidos en una fase de exploracion
previa.

Entre las segundas, Schiele (Schiele y Crowley 1994) compara distintas estrategias de
seguimiento de la posicion del robot basadas en rejillas de ocupacién y en sensores de
ultrasonidos. En esta propuesta se construye unarejilla de ocupacionlocal que se se empareja
con la rejilla global para producir una posicion estimada que se combina con estimaciones
previas mediante el filtro de Kalman.

Como conclusién, todas las implementaciones de técnicas basadas en el filtro de Kalman
suponen que la posicion del robot puede representarse mediante una funcién de densidad
normal. Esta limitacion hace que estas técnicas no sean robustas a ruido no modelado, ya que
Unicamente permiten representar una Unica posicidn posible del robot (funcién de densidad
unimodal).

En condiciones normales, el ruido en las observaciaiettdr) producido por obstacu-
los no modelados hara destractordel filtro y podré ocasionar que el robot pierda totalmente
su localizacion.

La suposicion de localizacién gaussiana hace también dificil tratar el problema de la
localizacion global, ya que no se dispone de una estimacion inicial para la localizacién.
Ademas, debido a la ambigliedad en la percepcion del entorno (distintas zonas del entorno
pueden generar mediciones similares), es necesario utilizar una funcién de distribucion
multimodal para representar la posible localizacién del robot.

2.3.2 Localizacion global

Tradicionalmente se ha supuesto que para solucionar el problema de la localizacion global
son necesarias técnicas basadas en busqueda, como la propuesta por Drumheller (Drumheller
1987).

El método de Drumheller obtiene un conjunto de caracteristicas (segmentos de rectas)
a partir de las lecturas de los sonares del robot y busca el mejor emparejamiento entre
estas caracteristicas y el modelo del entorno, utilizando un algoritmo de emparejamiento de
caracteristicas propuesto por Grimson (Grimson 1990). Como hace notar Leonard (Leonard
y Durrant-Whyte 1992), el uso de técnicas de busqueda no es lo suficientemente eficiente
para un modo de funcionamiento continuo de un robot mévil. El enfoque de bdsqueda fue
abandonado por la comunidad de robética mévil, y el problema de la localizacién global ha
permanecido sin solucién hasta la utilizacion de enfoques bayesianos (Nourbakhsh, Powers,
y Birchfeild 1995; Simmons y Koenig 1995; Kaelbling, Cassandra, y Kurien 1996; Burgard,
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Fox, Henning, y Schmidt 1996). Estos enfoques se pueden dividir en dos grandes grupos:
los que utilizan modelos topolégicos y los que usan rejillas de probabilidad. Revisaremos
ambos métodos después de introducir los fundamentos de la localizacion bayesiana.

2.4 Aproximaciones al problema del mapeado

Al igual que los modelos del entorno, podemos distinguir dos enfoques fundamentales al
problema del mapeado, a saber, enfoques métricos y enfoques topolégicos.

Enfoques métricos

Uno de los métodos mas antiguos y usados de construccion de mapas del entorno son las
rejillas de ocupacion. Las rejillas de ocupacién fueron propuestas inicialmente por Elfes y
Moravec (Moravec y Elfes 1985; Elfes 1987), y desde entonces se han adaptado en humero-
s0s sistemas robéticos (Borenstein y Korem 1991; Yamauchi 1996; Burgard, Fox, Henning,

y Schmidt 1996; Thrun, Bucken, Burgard, Fox, Frohlinghaus, Hennig, Hofmann, Krell, y
Schmidt 1998). Constituyen uno de los primeros enfoques probabilisticos capaces de fusio-
nar distintas observaciones realizadas por el robot, ademas de resaltar el papel fundamental
del modelo del sensor en la construcciéon de los mapas. Su principal problema es la au-
sencia de mecanismos correctores de los errores de odometria, por lo que no es factible la
construccion de mapas de tamafio medio. Este problema ha sido atacado por Thrun (Thrun
1998) mediante la utilizacion de la hipotesis de ortogonalidad y paralelismo de las paredes
del entorno.

Otros enfoques métricos utilizan modelos geométricos del entorno. Por ejemplo, Chatila
y Laumon (Chatilay Laumond 1985), en una propuesta similar a la planteada en nuestro tra-
bajo, proponen representar el entorno mediante poligonos en un sistema de referencia global.
En la propuesta se sugiere descomponer el espacio libre en un pequefio nimero de celdas
correspondientes a habitaciones, pasillos, puertas, etc. Sin embargo, aunque el enfoque
contiene elementos muy atractivos, no se detalla el mismo ni se presentan experimentos que
demuestren su aplicabilidad. Leonard (Leonard y Durrant-Whyte 1992) propone la cons-
truccion iterativa, mediante un filtro de Kalman, de una interpretacion del entorno basada en
caracteristicas elementales como segmentos y esquinas. Thrun (Thrun 1997) construye ma-
pas geométricos de forma incremental a base de concatenar segmentos de rectas detectados
en secuencias temporales de mediciones de sonar.

Por dltimo, un conjunto de métodos suponen que se parte de ciertos modelos a priori del
entorno e intentan ajustar distintos parametros del modelo mediante las lecturas realizadas
por el robot. Es el caso de los trabajos de Koenig y Simmons (Koenig y Simmons 1996)

y Shatkay (Shatkay y Kaelbling 1997), que utilizan el algoritmo EM (también conocido
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como Baum-Welch) (Rabiner y Juang 1986) para realizar la estimacion. Recientemente,
Thrun (Thrun 1998) ha formulado el problema de la construccion de mapas del entorno
en términos bayesianos (como detallaremos en el apartado 2.6). Sin embargo, ha aplicado
esta formulacion al problema mas restringido de encontrar el mejor mapa del entorno que
explica una secuencia de observacionestijgos de landmarks, observaciones que han sido
recogidas de forma manual.

Enfoques topolégicos

Los enfoques topoldgicos definen los mapas como grafos, con los nodos correspondiendo a
lugares y los arcos a acciones genéricas que mueven el robot de un lugar a otro. A menudo
se aflade a estos grafos informacién métrica que facilita la navegacién de un lugar a otro.
Intentan resolver, sobre todo, el problema del mapeado global.

Uno de los primeros trabajos en esta linea fue el de Kuipers y Byun (Kuipers y Byun 1988;
Kuipersy Byun 1991). Los nodos de su propuesta se corresponden con bliganggiibles
del entorno mediante alguna funcién genérica aplicada a los datos percibidos porlos sensores.
En concreto, proponen utilizar como medida de distincion de los lugares el nimero de
obstaculos equidistantes. De esta forma los nodos de sus grafos topol6gicos representan
méaximos locales de esta medida de distincion. Los arcos corresponden a conductas de
navegacion que el robot utiliza para moverse de un lugar a otro (¢segoir pared;, o
"seguir pasillo”) junto con informacion métrica adicional sobre la conducta de navegacion
seguida. El robot explora el entorno y construye el mapa topolégico de forma incremental,
conforme va encontrando nuevos lugadesinguibles Sin embargo, estas propuestas sélo
han sido comprobadas en entornos simulados y, en estas simulaciones, el robot contaba con
una bradjula que eliminaba los errores de odometria en la orientacion.

Un enfoque similar fue propuesto por Mataric (Mataric 1992). Su algoritmo utiliza como
nodos topolégicolndmarkspredefinidos como segmentos rectos, puertas o esquinas. Los
lugares topolégicos vecinos que va encontrando el robot se conectan mediante aristas que
representan también conductas de navegacion junto con informacion métrica que ayuda a
localizar al robot. La propuesta fue probada en un robot real evolucionando en una pequeia
habitacion. Los problemas del método propuesto residen en la dificultad de tratar mapas de
mayor tamafio y en la sensibilidad del mismo a falsas detecciorlandi®arks

2.5 Fundamentos de la localizacion bayesiana

La localizacion bayesiana proporciona un potente marco probabilistico general para estimar
la posicion de un robot mévil en a partir de las observaciones realizadas portef eolas
acciones realizadas.
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Se han realizado distintas propuestas e implementaciones de este paradigma (Nourbak-
hsh, Powers, y Birchfeild 1995; Simmons y Koenig 1995; Kaelbling, Cassandra, y Kurien
1996; Burgard, Fox, Henning, y Schmidt 1996). En el capitulo 5 aportaremos una nue-
va propuesta, basada en la utilizacion de métodos estocasticos de muestreo, que mejora la
eficiencia y la precision de las implementaciones realizadas hasta el momento.

Formularemos en esta seccién el enfoque bayesiano utilizando una notaciéon general en la
gue tendran cabida distintas implementaciones especificas. Estas implementaciones (filtros
de Kalman, rejillas de probabilidad y métodos topol6gicos) se revisaran posteriormente.

2.5.1 Definiciones y consideraciones previas

Para definir formalmente la localizacion bayesiana(sgo, . . ., X;) una secuencia de va-
riables aleatorias que representan el estado del robot movil en sucesivos instantes de tiempo.
La variable aleatoria puede estar definida sobre el espacio paramétrico de configuraciones
(x, y, 0) del robot (sienda e y coordenadas cartesianas en un mapa global del ent@rno y

la orientacion del robot) o puede tomar valores en el espacio discreto de nodos topoldgicos
que representan el entorno.

En cada instante de tiempel robot realiza una observacigndel entorno y realiza una
acciona,. La variable aleatoria puede ser una tupla con valores de distancias medidas por
sonares 0 por sensores laser, o puede ser una imagen del entorno tomada por una camara.
La accidna, proporciona informacion sobre el siguiente estade del robot y puede tomar
valores en el espacio de velocidadesw) del robot (donde es la velocidad lineal w la
angular), puede también representar incrementos de positidmnAy, A6) obtenidos de
los mecanismos dedometriadel robot, o puede representar un valor tomado de un espacio
discreto de comandompverse en la direcciofy, seguir paredo girar a la derecha.

El enfoque bayesiano nos permite estimar la funcion de densidad de la posicion del robot
X; en el instante, dadas las observaciones y acciones realizadas hasta ese instante y dada la
probabilidad a priorp(x1). Esta funcion de densidad representartdbabilidad a posteriori
después deinstantes de tiempo, y se formula mateméaticamente como

p(X[|Zl,...,Z[,a1,...,a[_1). (21)

Veremos a continuacion una formulacién recursiva que permite la actualizacién de la
funcion de densidad en el instantep(x;) a partir de la densidad en el instante anterior,
p(X;_1), de los datos medidos en el instante,, y de la accion previa,_;.

Para llegar a esta formulacion es necesario considerar dos suposiciones, a saber, la con-
dicién de Markov del modelo dinamico y la independencia de las observaciones. Tratamos
cada suposicion por separado.
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Condiciéon de Markov

Elmodelo dindmico del robot determina la informacion que las acciones y los estados previos
proporcionan sobre el estado actual. La formulacion de este modelo se expresa como una
funcion de probabilidad condicional

p(xt |Xla . '5Xt715 al? ] @71).

La condicion de Markov sobre el modelo dindmico determina que el nuevo estado de-
pende Unicamente del estado y de la accién anterior. Esto es,

P(X¢ [ X1, .o, X1, 81, .00, &—1) = p(Xe | X—1, &—1). (2.2)

La condicién de Markov establece que el conocimiento de las acciones y posiciones
previas,(as, ..., a_2, X1, ..., X;_2), N0 proporciona ninguna informacion adicional a la
derivada de conocer la posicion y accion inmediatamente previas.

Independencia en las observaciones

La segunda suposicion se refiere a las medidalsservadas por el robot. Se supone que
dichas observaciones son independientes con respecto al tiempo, esto es, que

t
P@, .z X XA &) = [ P& %, &), (2.3)
i=1

y que la probabilidad de la observacion depende del estado y no de la accion previa

P(Zi | X, &) = p(Zi | X;). (2.4)
Asi,

t
PE1 .z X XA a) = [ [ P x). (2.5)
i=1

Esta suposicion permite formular la funcién de probabilidad conjunta de todas las obser-
vaciones como el producto deflancion de verosimilitudie cada lectura. La suposicion de
independencia, a pesar de no ser estrictamente correcta, se aplica normalmente con éxito en
muchos trabajos que utilizan estos enfoques (Pearl 1988) y, en concreto, en la construccion
incremental de mapas de ocupacion del entorno (Moravec 1998; Thrun 1998).



40 CAPITULO 2. LOCALIZACION Y MAPEADO EN ENTORNOS DE OFICINA

2.5.2 Actualizacion de la probabilidad a posteriori

Se utiliza la regla de Bayes para calcular la probabilidad a posteriori

p(XI|Zla"'azl"alv"'7at—l) -
ap(Z | X, 21, ...  Zmg, @, .., ) pXe |20, o 2, @, .., 81)  (2.6)

Esto es, la probabilidad a posteriori puede expresarse como la verosimilitud de la tltima
lectura, ponderada por la funcién de probabilidad a priori de la posicion del robot.
La verosimilitud de la ultima lectura depende Unicamente de la posicion actual del robot

p(zf |le Zla L] Zl*la ala ceey af*l) = P(Zt |Xl‘) (27)

Este término se denomina normalmentedelo de observaciém modelo del sensor
Hay que hacer notar que en la expresion de probabilidad hay implicita una variable que define
el mapa del entorno, ya que las observaciones dependen tanto de la posicion del robot como
del entorno en el que éste evoluciona. Esta variable se hace explicita en aquellos enfoques
gue pretenden realizar una estimacion del mapa del entorno a partir de las lecturas realizadas
por el robot (Thrun 1998; Koenig y Simmons 1996), tal y como haremos en la seccion 2.6,
utilizandose entonces la expresion

p(zt |Xt’ ¢)a

dondeg¢ es la variable que define el modelo del entorno.

El segundo término de la ecuacion 2.6 describe la estimacién a priori de la localizacion
X; inmediatamentdespuésle la acciora;_; y antesde realizar la observaci@y. Elmodelo
dinamico (ecuacion 2.2) permite expresar esta densidad como

p(xt|Zl"",zt—1val""7at—1):

/ p(Xt |XZ—19 a-t—l)p(xt—l | Zl’ e ey Zt—lv ala ] at—2) (28)
Xr—1
Si observamos el ultimo término de la ecuacién anterior,

p(xl—l | 217 cee Zl—ls al7 L) a{—z)

podremos comprobar que representa la estimacion a posterior anterior, por lo que podremos
formular la ecuacién 2.6 como
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p(X,) = ap(z, Ixt)/ PX | X1, &—1) p(Xe—1), (2.9)

que proporciona una expresion recursiva de la estimacién a posteriori de la localizacién
del robot. El factoix es un factor de normalizacién que asegurajj(yp(x,) =1.

La expresion anterior es una expresion genérica que se aplica a cualquier implementacion
concreta de la localizacion bayesiana, obtenida mediante la definicion de un modelo de
observaciéon y de movimiento especificos.

Pero, sobre todo, lo que distingue los distintos enfoques de localizacién bayesiana es el
método escogido para estimar computacionalmente la funcién de densidad anterior. Revi-
samos en el siguiente apartado los métodos mas utilizados hasta el momento.

2.5.3 Estimacion de la funcion de densidad a posteriori

En la seccién anterior se ha derivado la expresiéon matematica de la funcion de densidad a
posteriori. Revisaremos en esta seccion las distintas técnicas propuestas para su estimacion
computacional.

Entre las mas extendidas se incluyen: (1) la suposicion depgxiees una funcion
normal y la estimacion de sus parametros (mediante el filtro de Kalman, (2) la discretiza-
cion del espacio de la variable aleataximétodos basados en la estimacion de rejillas de
probabilidad) y (3) la consideracion de queoma valores discretos (métodos topoldgicos).

Frente a estos enfoques proponemos en la tesis la utilizacfitrakede particulagjue
representan la funcién de densidad mediante un conjunto de muestras.

La localizacién bayesiana mediante el filtro de Kalman ya ha sido comentada previa-
mente. Revisamos a continuacién los enfoques de rejillas de probabilidad y de métodos
topolégicos. En el capitulo 5 presentaremos nuestra propuesta de estimacion bayesiana
mediante un filtro de particulas.

Rejillas de probabilidad

Frente a la propuesta anterior, las rejillas de probabilidad (Burgard, Fox, Henning, y Schmidt
1996; Thrun, Burgard, y Fox 1998) permiten representar y actualizar funciones de proba-
bilidad arbitraria. Para ello discretizan con una resolucion fina todo el espacio de posibles
localizaciones< del robot y formulan las funciones de densidad de la ecuacion 2.9 como
funciones constantes en los intervalos correspondientes a la discretizacion. De estaforma, la
actualizacion de la funcién de densidad se completa iterando por todos los posibles valores
discretos.

Es interesante recoger aqui el proceso de actualizacién de la funcién de densidad a
posteriori, dada la similitud que tendra el mismo con el método basado en muestreo que
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propondremos mas adelante. Laformulacién esta basadaenlostrabajos de Burgard (Burgard,
Fox, Henning, y Schmidt 1996; Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner,
y Thrun 1998) y aparece, en forma de algoritmo, en latabla 2.1. En el algoritmo, se utiliza la
notaciénP (x;) para referirse a la estimacion de la probabilidad para la celdiéhespacio
paramétricoX de posibles configuraciones del robot.

Algoritmo: Localizacién bayesiana con rejilla de probabilidad

1. Inicializacién
Para cada celdilla; € X

P(X;) < Po(X;)

2. Actualizacion de la accion a

Para cada celdilla; € X
P(X) < Y P(Xi|X;, A P(X))
Xj

3. Actualizacion de la lectura z

Para cada celdillz; € X
P(x;)) < P@|X)P(X)
P(X;)

P(x; —_—
" P

(normalizacion)

4. Saltara 2.

Tabla 2.1: Algoritmo de localizacion basado en rejillas de probabilidad.

Los métodos basados en este enfoque han demostrado su potencia en aplicaciones en
robots reales (Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y Thrun 1998;
Koenig y Simmons 1998), pero tienen ciertos problemas, entre los que se pueden citar la
complejidad computacional y la necesidad de definir a priori el tamafio de la discretizacién
del espacio de parametrosy, por ello, su precision.
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Métodos topolbgicos

Los métodos topoldgicos (Nourbakhsh, Powers, y Birchfeild 1995; Kaelbling, Cassandra,
y Kurien 1996; Koenig y Simmons 1998) definen un espacio discreto de estados para el
robot, distinto del espacio de configuracioriesy, 6). Este espacio discreto suele ser de
un grano muy grues@aésillo,unionfinal de pasillg, en contraste con el grano fino usado
en el enfoque anterior. Por ejemplo, Nourbakhsh (Nourbakhsh, Powers, y Birchfeild 1995)
utiliza nodos topoldgicos que representan pasillos o uniones.

El grano grueso mejora la complejidad computacional del método anterior. Sin embargo,
no se garantiza una localizacion precisa del robot y se producen con frecuencia errores de
confusion de estados, debidos a la ausencia de informacién métrica en los nodos.

2.6 Fundamentos del mapeado bayesiano

Aligual que en el apartado de localizacion bayesiana (seccién 2.5), denotartqs par, Xr)

la secuencia de variables aleatorias que definen el estado del robot movil en sucesivos instan-
tes de tiempo. En cada instamte T el robot ha realizado una observaciiry ejecutado

una acciorg,. LlamaremosD a la secuencia de observaciones y acciones obtenidas

D= (z1,a1,20,8p,...,ar_1, 27). (2.10)

La utilizacion de la variabl& mayuscula hace notar que el nimero de observaciones es
constante. El proceso de mapeado se aplica una vez que el robot ha realizado la exploracion
del entorno, y ha almacenado las observaciones realizadas. Todas ellas se van a utilizar
para estimar los mejores parametros que definen el mapa del entorno. Estos parametros se
representan con una variable aleatogiacuyos valores dependen del enfoque utilizado.

Por ejemplo, en el trabajo de Thrun (Thrun, Burgard, y Fox 199&% una asignacion de
coordenadas cartesian@s y) a un conjunto déandmarksgue el robot ha ido registrando
mientras navegaba. En la propuesta de Koenig (Koenig y Simmons 1996), se estima la
distancia entre los hodos de un mapa topologico construido a priori. En huestra propuesta, la
variablegp representa un conjunto de parametros utilizados en la definicion de las coordenadas
de los vértices del modelo poligonal construido a priori.

Siguiendo el enfoque bayesiano, se debe encontrar el ghapas probable dada la
secuencia de datos observdilzesto es, el mapaaximo a posterioffMAP). Aplicando la
regla de Bayes, el MAP es el valor geque cumple

¢* = arg ";aXP(WD) =
arg ”;aXP(D ) p(P). (2.11)
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El términop(D | ¢) define laverosimilitudde la secuencia de datos dado el mapg
el término p(¢) define la probabilidad a priori d¢. En muchos enfoques se supone que
la probabilidad a priori dé es uniforme. En este caso, podemos simplificar la ecuacién
anterior y considerar sélo el térmip@D | ¢) para encontrar el mapa mas probable. El valor
de ¢ que maximiza este término se denomina valomdima verosimilitudMV)

9" = argmaxp(D ). (2.12)

Desarrollando el término de verosimilitud de la ecuacién anterior, podemos incorporar
en el mismo la secuencia de posiciories ..., Xr) en las que se ha encontrado el robot
en los sucesivos instantes de tiempo. Estas variables se denomaiiaries ocultagn la
terminologia de los Modelos Ocultos de Markdlidden Markov ModelsHMM) ya que
el observador no tiene acceso directo a ellas (consultar (Rabiner y Juang 1986) para una
revision sobre los HMM vy algoritmos asociados).

Si se conocieran estas posiciones, podriamos expresar el estimador de maxima verosi-
militud como

Aplicando la definicidn de la probabilidad condicional, se llega a la siguiente expresion
de la funcién de densidad en la ecuacién 2.13

p(D,Xy,....Xr | @) = p(D[X1, ..., X7, $)p(X1, ..., Xr | D), (2.14)

Dado que la observacian depende Unicamente del mapy de la posicién del robot
en el instante, x;, y suponiendo independencia entre las observaciones, el primer término
de la ecuacién anterior puede reescribirse como

T
p(D 11, ..., %7, 8) = [ [ p@ % §). (2.15)

=1

La localizacion del robot en el instantex,, depende Unicamente de su localizacion en
el instante — 1, x,_1, y de la acciérg, realizada por el robot en ese instante,

T
PO, ... xr | D) = pO) [ [ p% X1, 8. (2.16)
=2

El término p(x;) determina la distribucién a priori de la localizacién del robot en el
primer instante de tiempo.
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Sustituyendo las ecuaciones 2.15 y 2.16 en la ecuacion principal 2.13 se llega a la
formulacion final del mapa de maxima verosimilitud

¢*=al’gI’T;aXp(D,X1,,XT|¢)=

T T
= argmaxp(w) [ [ p@ 1 ) [ pox1x1, 3. (2.17)
=1 =2
La expresion final, al igual que la expresion que determina la localizacién (2.9), depende
Unicamente del modelo de observacidiiz; | x;, ¢), y del modelo dinamico del robot,

P | Xi—1, @-1).
El problema fundamental de la expresion 2.17 es que no se conoce el valor de las posi-
ciones(xy, ..., Xr). Una solucién, claramente ineficiente, seria integrar todos los posibles

valores de estas variables, de forma que se calculara

T T
arg rquaX/ ce / p(X1) l_[ P(Z | %, @) 1_[ P& | X1, &1). (2.18)
X1 XT =1 =2

Existe, afortunadamente, una técnica que realiza un descenso por gradiente en el espacio
de verosimilitud: el método EM (Dempster, Laird, y Rubin 1977), que, en el contexto de los
HMM se denomina algoritmo Baum-Welch (Rabiner y Juang 1986) (para aplicaciones del
EM en el contexto del mapeado, consultar (Koenig y Simmons 1996; Shatkay y Kaelbling
1997; Thrun, Burgard, y Fox 1998)). Un algoritmo EM realiza un descenso por gradiente
en el espacio de verosimilitud alternando dos pasogaso de estimacidfexpection
(paso E) y urpaso de maximizacié(paso M). En el paso E, se estiman los valores mas
probables de las localizaciones del robot basandose en el mejor valor del mapa obtenido
hasta el momento (en la primera iteracion no hay ninguno). En el paso M se estima un
mapa de maxima verosimilitud a partir de las localizaciones estimadas en el paso E. El paso
E puede interpretarse como un procedimiento de localizacién dado un mapa fijo, mientras
gue el paso M implementa un proceso de mapeado bajo la suposicién de que la localizacién
del robot es conocida. La aplicacion iterativa de ambos pasos conduce a un refinamiento
sucesivo tanto de las posiciones estimadas como del mapa.

Un algoritmo EM de mapeado debe proporcionar implementaciones ddtyatel paso
M. Dependiendo del modelo del entorno y de las funciones de densidad, sera mas o menos
directo implementar ambos pasos. En nuestro caso, @ sarmodelo paramétrico, y la
funcion de verosimilitud una funcion multimodal no representable mediante una distribucion
normal, no es posible llegar a una solucion cerrada de ninguno de los pasos. En el capitulo
7 proponemaos un algoritmo estocastico que sigue la filosofia del EM para buscar el mapa de
maxima verosimilitud.
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2.7 Discusion

Se han presentado en este capitulo los problemas de la localizacion y el mapeado, que
constituyen los problemas centrales de la tesis. Se han revisado los distintos enfoques
y propuestas existentes en la literatura para tratar ambas cuestiones, haciendo un énfasis
especial en los distintos modelos de entorno, en las propuestas de localizacién global y local
y en los enfoques para resolver el problema del mapeado.

Se presenta una formalizacion de ambos problemas utilizando la teoria de estimacion
bayesiana. Esta formalizacion unifica las propuestas existentes y proporciona un marco
general en el que se pueden formular muchas de las técnicas propuestas.



Capitulo 3

Un modelo estocastico del sonar

Un buen modelo del sonar proporciona una estimacion correcta de las lecturas reales que
el sensor realizaria dado un entorno conocido. Esta estimacién nos va a permitir formular
una funcién de verosimilitud, con la que, dado un modelo del entorno, unos datos leidos y
una posicion del robot, sea posible determinar la probabilidad de que los datos hayan sido
realmente percibidos en ese entorno y en esa posicion.

La funcion de verosimilitud de las lecturas del sonar sera el elemento clave de los
algoritmos de localizacion y mapeado.

3.1 Introduccion

La palabra sonar deriva del ingl&©und NAvigation and Ranging se suele utilizar para
denominar dispositivos que detectan y localizan objetos submarinos mediante la emision
de ondas de sonido y el calculo del tiempo de recepcién del eco rebotado. Por extension,
reciben el mismo hombre leensores de distancie uso en robots méviles, basados en la
emision de pulsos de ultrasonidos y en la medicién de la distancia de los obstaculos por el
tiempo de recepcion del eco.

A pesar del alto nivel de ruido existente en sus lecturas, los sonares se han convertido en
el sensor de distanciatipico de los robots méviles. Se ha utilizado el sonar, por ejemplo, para
detectar obstaculos (Arkin 1989; Borenstein y Korem 1991), construir mapas de ocupaciéon
del entorno (Elfes 1989) o localizar la posicion del robot en un entorno previamente conocido
(Drumheller 1987).

El alto nivel de incertidumbre de las lecturas del sonar aconseja tratarlas mediante alguna
técnica basada en modelos probabilisticos bayesianos (Fukunaga 1990) (incluygnalo el
de Kalmary sus variantes (Dean y Wellman 1991)). De hecho, este tipo de enfoques se han
aplicado al sonar desde los comienzos de la investigacion en robética movil (Moravec y Elfes
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1985; Matthies y Elfes 1988), aunque es en la actualidad cuando comienza a reconocerse
plenamente su utilidad (Koenig y Simmons 1998; Fox, Burgard, Thrun, y Cremers 1998b;
Thrun 1998).

En los enfoques bayesianos, como el propuesto en esta tesis, tiene una importancia
fundamental realizar un calculo correcto de la verosimilitud, y para ello es indispensable un
buen modelo del sensor.

Este trabajo propone una funcién multimodal de verosimilitud de un sonar genérico
basada en un modelo novedoso y realista del sensor que incorpora caracteristicas no con-
templadas hasta el momento. El modelo parte de la formulacion de Barshan (Barshan y Kuc
1990), a la que afiadimos la utilizacién de una técnica equivalente al trazado de rayos (Watty
Watt 1992) para simular todas las posibles trayectorias de los haces de ultrasonidos emitidos
por el transductor. De esta forma es posible simular lecturas que, hasta el momento, eran
despreciadas como errores del sonar y, sin embargo, pueden ser modeladas correctamente
mediantedobles rebotes

Todas las medidas y experimentos presentado en este trabajo han sido realizados con el
anillo de 24 sonares de PIXIE (ver figura 3.1).

Kil swich o dfSea
Console - f I
Console Strut /@?

Door Arc S—
100010000000
Enclosure ——
Enclosure
Door
IR Sensor nofla o o =|oon
Base =
Door
Base
IR Sensor fo o oo o opod
Wheel
(@) (b)

Figura 3.1: PIXIE, robot mévil RWI B-21 con el que se ha realizado la experimentacion:
(a) fotografia, (b) esquema mostrando sus elementos.

En el apartado 2 describiremos las caracteristicas principales de los transductores de
ultrasonidos, presentando datos reales del anillo de sonares. En el apartado 3 se propone
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un modelo empirico de interaccidn entre un haz de ultrasonidos y el entorno. Este modelo
se utiliza como base del algoritmo de trazado de rayos especificado en el apartado 4. En
este apartado también se detallan los distintos parametros que permiten ajustar el modelo
a las lecturas reales, y se estudian los resultados obtenidos por el algoritmo de simulacion,
examinandose cémo varian dichos resultados en funcién de los valores dados a parametros
del modelo. Por ultimo se comparan dichos resultados con lecturas reales y se realiza el
ajuste de los parametros a los datos reales. En el tltimo apartado se formula la verosimilitud
multimodal de las lecturas de un sonar y de un anillo basandose en el modelo planteado.

3.2 Caracteristicas del sonar

Veremos en este apartado las caracteristicas de los sensores de ultrasonidos Polaroid y ex-
plicaremos el funcionamiento usual de los anillos de sonares usados habitualmente en los
robots moviles. Enumeraremos los distintos problemas inherentes a los sensores de ultraso-
nidos de este tipo y, por Ultimo, presentaremos datos experimentales de lecturas realizadas
en distintos entornos y condiciones.

3.2.1 Funcionamiento del transductor de ultrasonidos Polaroid

Un transductor Polaroid (Polaroid Corp. 1984) tiene una forma circular, con un diametro de
unos 5 cm. Una fotografia de un sensor de este tipo aparece en la figura 3.2.

Figura 3.2: Fotografia de uno de los transductores Polaroid con los que se ha realizado la
experimentacion.

El transductor actia como emisor y como receptor de sefiales de ultrasonidos. En su
funcionamiento como emisor, envia frontalmente un breve tren de pulsos de ultrasonidos de
unos 50 kHz. con el perfil de intensidad que aparece en la figura 3.3. Este perfil determina
un haz principal de sonido en forma de cono con una extension angular de taaibos
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lados del eje central en el que esta orientado el transductor. A mayor distancia angular la
intensidad del sonido decae exponencialmente.

Figura 3.3: Patrén de intensidad de emision de ultrasonidos (en dB) en funciéon de la distancia
angular al eje de orientacion del transductor.

La duracion del tren de ultrasonidos suele ser de alrededor de 1 ms. Después de haber
emitido los pulsos, el sensor pasa a modo receptor, esperando los ecos procedentes de los
obstaculos. Un amplificador va aumentando de forma calculada su ganancia para eliminar
el efecto de atenuacion del sonido con la distancia. Los ecos recibidos (ver figura 3.4)
se filtran mediante un sencillo algoritmo de umbralizacion, y aquellos que sobrepasen el
umbral de intensidad especificado se interpretan como ecos procedentes de un obstaculo.
Tanto el umbral de intensidad como la ganancia se modifican manualmente en el proceso de
calibracién del sensor. Debido a ello es bastante probable que existan variaciones importantes
en las lecturas proporcionadas por distintos sonares.

Amplitud

Umbral

—

to

Figura 3.4: Eco de un pulso de ultrasonidos con mdltiples reflexiones.

Unavez detectado un eco se calcula la distancia al objeto que lo ha producido mediante el
tiempo transcurrido{OF — Time Of Flight-) desde la emision del pulso hasta la recepcion
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del eco. En la figura 3.4 esto sucede, para el primer obstaculo, en el instante marcado como
to. A partir del TOF se obtiene, mediante la siguiente férmula, la distatcéala que esta
situada el obstaculo.
Ro =0 (3.1)
2

dondec es la velocidad del sonido en el aire

El sensor puede funcionar detectando el obstaculo méas cercano o bien puede devolver los
TOF de las lecturas que superan el umbral en un determinado intervalo de tiempo después
de emitido el pulso. Todos los experimentos se han realizado con el sensor funcionando en
el primer modo. Si, después de un intervalo de tiempo predefinido, no se detecta ningln
eco, el sensor devuelve un valor maximo arbitrario.

3.2.2 Errores de medida en las lecturas del sensor de ultrasonidos

En muchas ocasiones las lecturas realizadas por un sensor de ultrasonidos contienen erro-
res debido fundamentalmente a dos factores: la extension angular del haz de sonido y la
inclinacion de los obstaculos frente al sensor.

Estos dos factores producen tres tipos fundamentales de errores, que enumeramos a
continuacion.

1. No recepcion del eco por un angulo de incidencia demasiado grande

Como se representa en lafigura 3.5 (a), un obstaculo demasiado inclinado con respecto
al eje principal del sensor hace que el eco del pulso de sonido se pierda y no sea
recogido por el transductor. Las inclinaciones a partir de las que este error comienza

a producirse dependen principalmente de la extension angular del haz. Cuando se
produce este error, el sensor detecta un espacio vacio frente a él.

2. Incertidumbre de la distancia debido a la extension angular del haz

Cuando el angulo entre el transductor y el obstaculo no es tan grande como para que
se produzca el error anterior, se produce otro error de medicion debido a que el eco
devuelto por el obstaculo no es el procedente de la zona central del cono de sonido,
sino de una zona periférica del mismo. En la figura 3.5 (b), se puede observar que

el primer eco que llega al transductor es el procedente del lado izquierdo del haz,

realizandose una medida de la pared menor de la existente en realidad.

3. Dobles rebotes

1340 mis.
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(a)

(c)

Figura 3.5: Tres tipos de errores de medicién del sensor del sensor de ultrasonidos. En (a)
el eco no se recibe debido a que rebota alejandose del transductor. En (b) se realiza una
medida menor de la que existe en realidad debido a la extensién angular del haz de sonido.
En (c) se realiza una medida mayor de la que existe en realidad debido a la recepcion de un

doble rebote producido por una esquina.

En el caso de la primera situacion, en la que el eco es reflejado fuera del transductor,
si la onda de sonido reflejada incide en otro obstaculo, es posible que éste refleje a su
vez el sonido en la direccion del transductor. Este es el caso denominado como de
undoble rebotey sucede principalmente en lecturas realizadas en configuraciones de

esquina (ver figura 3.5 (c)). En este caso la lectura devuelta por el sensor es mayor

gue la existente en la realidad.

Estos errores de medicién no se producen aleatoriamente, sino que se deben a factores
gue pueden ser cuantificados y modelados (extension angular del haz, angulo entre el eje del
transductory el obstaculo frente al transductor y disposicién de los obstaculos en el entorno).
En las secciones siguientes veremos coOmo realizar esta modelizacion.
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3.2.3 Anillo de sonares

Debido a la baja resolucion de los sonares, o normal es que no se utilicen individualmente,
sino agrupados en ciertas disposiciones tipicas. La mas habitual de ellas, sobre todo para
robots mdviles circulares, es la de anillo con 12 o0 24 sonares. Un anillo de 24 sonares
determina que cada uno de ellos va a vigilar una zona angulardd$t® es consistente

con la resolucidn de los sensores y garantiza que todo el espacio alrededor del robot estara
cubierto.

Un primer problema de los anillos de sonares es la posible existencia de lecturas cruzadas
(crosstalksen inglés) entre sonares cercanos. Esto es, si disparamos dos transductores
cercanos simultdneamente, es posible gue los pulsos de sonido de uno de ellos activen el
otro. Una manera de evitar lasosstalksconsiste en activar los sensores en grupos de 4
unidades situadas en posiciones opuestas. De esta forma, después de 6 lecturas se habra
realizado una lectura completa de todo el anillo de 24 sonares. Todo el proceso dura unos
250 ms., dando tiempo a completar hasta 4 lecturas cada segundo. Es posible registrar de
forma independiente el instante de tiempo en el que se ha realizado la lectura de cada uno
de los sensores, lo que sera de gran utilidad cuando se utilicen estas lecturas para realizar un
seguimiento de la posicién real del robot en movimiento, o de las caracteristicas del entorno
frente a él.

Existen enfoques mucho mas sofisticados para temporizar las lecturas de los transduc-
tores de un anillo de sonares, como el propuesto por Borenstein y Koren en (Borenstein y
Korem 1995). Con este método se consigue mejorar la velocidad de las lectuedsyeh@r
veces con respecto al método presentado previamente. Sin embargo, para la experimenta-
cién y para las aplicaciones que presentaremos, no hemos necesitado aumentar la velocidad
de lectura del anillo.

Otro importante problema de los anillos, que no suele citarse en la literatura, es el pro-
blema de la distinta calibracion de los sonares que lo componen. Es muy dificil ajustar todos
los potenciémetros de todos los transductores para que proporcionen las mismas lecturas.
En el siguiente apartado presentamos algunas lecturas realizadas por distintos sonares de un
mismo anillo que evidencian el problema. La solucion que proponemos pasa por considerar
cada uno de los sonares de forma independiente, ajustando el modelo de sensor a cada uno
de ellos.

3.2.4 Experimentacion

Todos los resultados presentados en esta seccion han sido obtenidos a partir de lecturas del
anillo de sonares del robot movil mencionado en la introduccion.

Enlafigura 3.6 se muestran 130 lecturas de un mismo sonar del anillo obtenidas mediante
un giro de 360 del robot.
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La interpretacion de las lecturas de la figura anterior se realiza en la figura 3.7, en donde
se puede comprobar los errores ya mencionados propios de los sensores de ultrasonidos. Se
han redondeado las lecturas producidas por dobles rebotes.

En la figura 3.8 se muestran las lecturas de distancia obtenidas por el anillo de sonares
con el robot moviéndose a lo largo de un pasillo.

Por ultimo, en la figura 3.9 se puede observar el problema de la calibracién del anillo. Se
puede comprobar que las lecturas tomadas por dos sonares distintos en diferentes posiciones
de la habitacién son bastante dispares, sobre todo en aquellos casos en las que el angulo
entre el sonar y el obstaculo es bastante pronunciado.

L] Lectura
No lectura

Figura 3.6: 130 lecturas de un sonar del anillo con el robot girando a una velocidgt de 5
Se dibujan como rectas aquellas lecturas que no detectan ningun obstaculo.
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Dobles rebotes
Obstaculo no modelado

° S = T

[ i S N
- o v
Habitacion 4

o Lectura
No lectura

Dobles rebotes

Figura 3.7: Representacion de las lecturas de la figura 3.6 sobre la habitacion en la que se

realizé el experimento.
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Figura 3.8: Lecturas del anillo de sonares de PIXIE obtenidas con el robot moviéndose a lo
largo de un pasillo de 26 metros de largo y 1.6 metros de ancho.
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Figura 3.9: Lecturas de los sonares 15 (izquierda) y 18 (derecha) del anillo, con el robot
situado en distintas posiciones (de arriba a abajo) de un recinto.
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3.3 Modelo de interaccion del sensor de ultrasonidos

Kuc (Kuc y Siegel 1987) formula, basandose en conceptos de acustica y teoria de sistemas
lineales, un modelo fisico que simula la interaccion de las ondas del pulso de ultrasoni-
dos con planos y esquinas del entorno. Los resultados son correctos, pero la complejidad
computacional del modelo es muy grande.

En la propuesta de Barshan (Barshan y Kuc 1990), de amplia aceptacion en la actualidad
(Henderson, Bruderlin, Dekhil, Schenkat, y Veigel 1996; Ko, Kim, y Chung 1996; Ayrulu,
Barshan, y Utete 1997), se simplifican las ecuaciones anteriores, desarrollandose expresiones
analiticas mas sencillas y eficientes de computar. Leonard (Leonard y Durrant-Whyte 1992)
adapta el modelo de Barshan a diferentes tipos de obstaculos, como son planos, esquinas,
aristas y cilindros. El modelo simula el sonar frente a un obstaculo plano, modelando
correctamente los problemas de no recepciéon del eco y de incertidumbre en la distancia,
pero dejando sin tratar los efectos de los dobles rebotes. Todos estos modelos tienen un
caracter local ya que descomponen el entorno en el que se realiza la simulacién en elementos
individuales y modelan el comportamiento del sonar con cada uno de los elementos (ver figura
3.10).

Segmento

Esquina Esquina
Segmento Segmento
Arista Segmento
o o Arista
Segmento Arista
Arista
(@ (b)

Figura 3.10: Los modelos del sonar de Barshan (Barshan y Kuc 1990) o Leonard (Leonard
y Durrant-Whyte 1992) descomponen un entorno (a) en elementos individuales (b) (aris-
tas,esquinas y segmentos) y simulan la interaccion del sonar con cada uno de los elementos.

Frente a estos modelos locales existen propuestas globales, procedentes del campo de la
acustica, que simulan correctamente el comportamiento del sonido en una sala. En particular,
se ha propuesto con éxito la utilizacion del trazado de raggstacing) (Watt y Watt 1992)
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y de variantes suyas como@ne tracingy el pyramid tracingpara resolver el problema
de los rebotes indirectos de los ecos con el entorno (Ondet y Babry 1989; Stephenson 1990;
Vian y van Maercke 1986).

Formulamos en este apartado una extension del modelo de Barshan que, con una imple-
mentacion eficiente, contempla los rebotes de los ecos con el entorno mediante una variante
del algoritmo basico del trazado de rayos.

3.3.1 Modelo fisico del sensor de ultrasonidos

Cuando el sonar emite un pulso de sonido, éste se comporta como un haz con forma de
cono centrado en el transductor y que tiene como eje de simetria la linea perpendicular a
la superficie del sonar. Experimentalmente se comprueba que la amplitud de la presion del
sonido en un puntp situado en el extremo del cono varia de forma exponencial en funciéon
del anguloA# entre la perpendicular al sonar y la recta que va del centro del sgnar a
formando el tipico I6bulo emisor del sonar (figura 3.11).
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Figura 3.11: Representacion de la ecuaciti®?*/% que define la amplitud del haz de
ultrasonidos emitido por un transductor en funcion de la desviacion con respecto a la normal
del propio transductor.

La presién maxima se obtiene cuangesta situado justo en la perpendicular del sonar
y disminuye de forma exponencial conforme aumeXkda La ecuacion

a(A0) = amaxe~220°/%) (3.2)

modela esta presion, siendgay, la amplitud maxima observada. Esta ecuacién representa
unadistribucién normal con una desviacién estandar igigPa siend@y una constante que
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Figura 3.12: (a) Un par de transductores enfrentados. (b) Un transductor enfrentado a una
pared con una inclinaciéoné.

depende del tipo de emision del pulso de sonido y que denominamos constante de dispersiéon
del haz.

Paraun par detransductores idénticos, uno actuando como emisory el otro como receptor,
la amplitud de la sefal detectada se computa multiplicando las dos presiones del pulso:

a(Ab, An) = amaxe(_2A92/0§)e(_2A’72/”g), (3.3)
siendoAf y An los angulos de inclinacion del transductor emisor y receptor respectivamente
(verfigura 3.12 (a)), ¥maxla amplitud maxima observada, esto es, cuando los transductores
estan enfrentados directamenta§ = An = 0.

En el modelo propuesto por Barashan y Kuc se supone que el entorno esta formado por
paredes planas que actlan como reflectores especulares del sonido. El transductor actla
al mismo tiempo como emisor y como receptor. Se deriva la siguiente expresion para la
amplitud de la sefal recibida por el transductor

G(AQ) = amaxe(_‘lAez/Gg), (34)

siendoA# el angulo formado por la normal al transductor y la normal al plano de la pared
(ver figura 3.12 (b)).

La mayoria de los sonares no proporcionan la amplitud de la sefial recibida, sino el TOF
del primer rebote. Este se obtiene umbralizando la sefial, de forma que se considera que se
ha recibido un reflejo de la sefial cuando la amplitud recibida supera un determinado umbral
ag. De esta forma, sustituyendg en la ecuacion 3.4, consideramos que un obstaculo se
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detecta correctamente cuando el angmoque forman la normal al transductor y la normal
al plano del obstaculo es menor que un umbral de sensibitidaddonde

A6, — Bon/— |n(2f10/amax) (3.5)

Normalizando la ecuacion anterior, considerangigx = 1, entonces G< ag < 1y la
ecuacion anterior queda como sigue

NG, = fov—In(ao) "_zmmo), (3.6)
con lo que el sector angular de sensibilidad del sonar es (ver figura 3.13)
[_Qov— In(ao) +90v—|n(ao)] (3.7)
2 ’ 2 ' '

Figura 3.13: Zona de sensibilidad del haz de ultrasonidos.

3.3.2 Extension del modelo para contemplar multiples reflexiones

Lalimitacion mas importante del modelo anterior es que Unicamente contempla lainteraccion
entre un sonar y un unico obstaculo, no considerando el sonido indirecto debido a los reflejos
del mismo entre los propios obstaculos. Lecturas como las que se marcan en la figura 3.14
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(a), no se detectarian como obstaculos con una aplicacién directa del modelo de Barshan.
Esto es debido a que el &ngulo de la superficie en la que incide directamente el sonar supera
el umbral angular de sensibilidatig,;. Sin embargo, como se muestra en la figura, el sonar
recibe sonido rebotado por esa superficie. Una interpretacion plausible de dichas lectura,
gue se utiliza con éxito en las simulaciones de acustica, es que ese sonido ha llegado al sonar
después de varios rebotes con las paredes del entorno, como se muestra en la figura 3.14 (b).

[ Lectura
No lectura

Dobles rebotes

(@) (b)

Figura 3.14: (a) Lecturas procedentes de dobles rebotes. (b) Trayectorias del sonido que
han producido uno de los dobles rebotes.

A continuacion presentamos una extension del modelo de Barshan que realiza una si-
mulacion global del comportamiento del sonar, en la que todos los elementos del entorno
interacttan entre si, reflejandose en las ondas de sonido.

Amplitud

Cuando un pulso de ultrasonidos rebota en una superficie consideramos que su reflejo sigue el
mismo patron definido por la ecuacion 3.2, sufriendo una atenuacion exponencial conforme
el angulo se aparta del angulo principal de reflexién. Asi, supongamos un rayo puntual
con amplituda; que incide en una superficie. Consideramos que el reflejo de este rayo se
comporta como un haz cuya presion de sonido maxima corresponde al angulo de reflexion
especular y decae exponencialmente segun la ecuacion

a(Ak) = aie(_ZAKZ/Kg), (3.8)
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siendoAk el incremento con respecto al angulo de reflexion especular (ver figurad.15),
la presion del rayo incidente s la varianza de la distribucion de reflexion, que depende
principalmente del tipo de material del obstaculo.

Figura 3.15: El reflejo de un pulso de sonido incidente en un obstaculo con una amplitud
a; genera un haz reflejado cuya ampliwddecae exponencialmente alrededor del rayo
reflejado ideal segun la ecuacion= a;e~22<*/<®), siendoAx el angulo de desviacion con
respecto al rayo reflejado ideal.

Laamplitud del eco percibido por el sonar, en el caso de un haz que relacagerfices,
se calcula multiplicando la expresién anterior tantas veces como superficies existan. Al final
la sefial rebotada sera percibida por el sonar si el Ultimo haz rebota en su direccion.

Por ejemplo, en la figura 3.16, vemos un rayo que se emite con un angutmn
respecto a la normal del transductor, que se refleja con una trayectoria definida por los
angulosAxy, Ak, con respecto a los angulos de reflexién especular y que incide en el
transductor con angulan.

En general, denotamos dota trayectoria seguida por un rayo emitido por el transductor,
con un angulo de emisiéhg, &ngulos de reflexiones, ..., Ak, y dngulo de incidencian.

La amplitud final de un rayo emitido que sigue la trayectdrige puede calcular siguiendo
la idea de Barshan de multiplicar las sucesivas disminuciones de la amplitud causadas por
las desviaciones angulares de la trayectoria, lo que nos lleva a la siguiente ecuacion.

a(T) = 20065+ 0T WG+ + DR S+ 65) (3.9)
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Figura 3.16: Ejemplo de un rayo de ultrasonidos que se refleja en una superficie con un
anguloAk; con el rayo reflejado ideal y en otra cor,.

Normalmente se utilizan amplificadores de ganancia para compensar la pérdida de am-
plitud de la sefial debida a la difracni¢ a laatenuacion, por lo que la amplitud del rayo
reflejado puede considerarse independiente de la distancia a la que se encuentra el obstaculo
y, por tanto, este factor no se considera en la ecuacién anterior.

TOF

Para obtener el primer TOF del haz debemos encontrar el rayo que realice el recorrido menor,
esto es, el que primero llegue rebotado al transductor, y que cumpla la propiedad de incidir
en el sensor con una amplitud mayor que su umbral de sensibilidad, que hemos denominado
ap. SillamamosDr a la distancia recorrida por un rayo que sigue la trayectoria angular

", entonces la expresion que define el ralganedido por nuestro modelo de sonar es la
siguiente

Ro = arg rrginDr/Z sujeto au(I') > ao. (3.10)

Para simularn sensores de un robot mavil consideraremos que son independientes unos
de otros (como de hecho sucede en la realidad) y aplicaremos el modelo en la orientacion
definida por cada sensor. Serad necesario ajustar en cada caso los parametros del modelo a
las caracteristicas particulares de cada uno de los sonares.
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3.4 Simulacion del sonar mediante trazado de rayos

La simulacion del modelo del sonar se basa en el algoritnttadado de rayogconsultar
(Watt y Watt 1992) para una revision completa), adaptado para incorporar el tratamiento del
TOF.

3.4.1 Trazado de rayos

Enlatécnica del trazado de rayos, utilizada para construirimagenes sintéticas hiper-realistas,
se lanza un conjunto de rayos, uno por cada uno de los elementos de imagen de la pantalla,
desde el punto de vista desde el que se toma la imagen hacia la escena.

Fuente de luz

P

Rayo directo

Rayo indirecto
reflejado

Luz reflejada
Pixel al plano de imagen

Plano de imagen

Figura 3.17: Funcionamiento basico del trazado de rayos. El rayo que llega desde la escena
€s una composicion de un rayo reflejado ambiental, un rayo reflejado especular y un rayo
refractado.

Para cada rayo se calcula la interseccion mas cercana con un objeto de la escena y se
computa el color del mismo. Para ello se supone que el color del objeto depende de la luz
recibida por el mismo, calculandose de forma recursiva las tres posibles formas por las que
puede recibir luz el objeto: rayo de luz indirecto reflejado procedente de otro objeto, rayo
de luz indirecto refractado si el objeto tiene algin grado de transparencia y rayo directo
procedente de la fuente de luz (ver figura 3.17).
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Algoritmo TrazadoDeRayos
Entrada: PuntoComienz®irecciéndel rayo de la pantalla hacia la esceRegfundidad
Salida: Color resultante

Si Profundidad> PROFUNDIDAD_MAXIMA devolver COLOR_NEGRO
Sino
Calcular elObjetoy el Puntodonde intersecta el rayo que va®entoComienza Direccion
Si existeObjetointersectado
ColorLocal := CalcularLuzDirectabjetgPuntg
DirecciénReflejada= CalcularReflexior@bjetgPunto
DirecciéonRefractada= CalcularRefraccior@bjetaPuntg
ColorReflejada= TrazadoDeRayoBuntgDireccionReflejaddrofundidad+1)
ColorRefractada= TrazadoDeRayoBuntgDireccionRefractaddrofundidad+1)
devolver CombinarQbjetgColorLocalColorReflejadgColorRefractadd
sino devolverCOLOR_NEGRO

Tabla 3.1: Algoritmo recursivo base del trazado de rayos

Hay que hacer notar que, aunque el fundamento del modelo es el que se ha enunciado
previamente, el trazado de rayos se realiza de atras hacia adelante, desde el punto de vista
hacia la escena, en vez de hacerlo desde la fuente de luz hacia el punto de vista. Esto es
porgque no estamos interesados en todos los rayos emitidos desde la fuente de luz, sino sélo
en un subconjunto reducido de éstos, los que, después de reflejarse en elementos de la escena,
terminan pasando a través del plano de imagen.

Laforma de implementar el trazado de los rayos es recursiva, utilizandose una estructura
de arbol binario como soporte légico. Cada nodo representa una llamada recursiva del
procedimiento general de trazado de rayos, teniendo normalmente una rama producida por
el rayo reflejado y otra por el refractado. Si un rayo intersecta un objeto, éste produce otros
dos rayos, uno reflejado y otro refractado. En ambos se aplica el algoritmo de trazado de
rayos para calcular con qué objetos intersectan y, para cada interseccion, volver a dividirlo
en una componente reflejada y otra refractada. El proceso continlia hasta que se llega a un
nivel de recursion predeterminado o hasta que el rayo no intersecta con ningun objeto, en
cuyo caso se le asigna un color de fondo. El color de cada interseccioén se calcula sumando
la componente de luz ambiental debida a la fuente de luz con las componentes debidas a
los rayos reflejados y refractados. En la tabla 3.1 se encuentra una version de alto nivel del
algoritmo recursivo del trazado de rayos (adaptado de (Watt y Watt 1992)).

3.4.2 Simulacién del sonar

A diferencia del algoritmo del trazado de rayos no se trazaran los rayos hacia atras, sino de
forma inversa (como en la técnica dckward raytracingGlassner 1989)). Esto se debe
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a que en el caso del sonar coinciden la fuente y el sensor de sonido, con lo que es indiferente
trazar los rayos hacia atras o hacia adelante.

En la figura 3.18 se puede ver un ejemplo de recorrido de los rayos de sonido segun el
algoritmo de simulacion del sonar.

.
\rrc[
Ax
Tin ? \
L M
AD TS
Iref
Tout

Figura 3.18: Ejemplo del funcionamiento del algoritmo de simulacién del sonar.
El algoritmo de simulacién (detallado en la tabla 3.2) funciona como sigue.

e Suponemos que el sonar estéa orientado en la direécin primer lugar se calcula el
umbral de sensibilidad del sonag,, y se emite un nimerdde rayos desde— Ab,
hasta) + A6,. Se recorren todos estos rayos emitidos y se calcula el alcance devuelto
por cada uno de ellos, devolviendo el menor alcance.

e Para calcular el alcance de un rayo emitigg, primero se determina el punto de
interseccionp con el entorno y la direccion de reflejo del rayo en ese pynto A
continuacion se compruebarsi; incide en el sensor de ultrasonidos con amplitud
suficiente. Para ello se traza el rayp del transductor al puntp y se calcula el
anguloAk entrer;, y r..r, y €l anguloAn entrer;, y la orientacion del transductor
6. Una vez calculados estos angulos ya se puede aplicar la ecuacion 3.9 para calcular
la amplitud del sonido entrante en el transductor. Si ésta es mayor que el umbral,
entonces se almacena el rayo y la distancia recorrida en una lista.

e Si la amplitud no es mayor qug comprobamos entonces el siguiente reflejo. Se
considera que el pulso se refleja en la direccion del rayo reflejady se calcula
la interseccion de éste con el entorno, volviendo a calcular la amplitud del sonido
entrante en el transductor debida al rayo reflejado con el método anterior.
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Algoritmo Alcance de sonar

Entrada: Angulo6 en el que se realiza la lectura del sonar
Salida: Alcance del sonar en la orientacién

Parametros: g, kg, ag

SealistaRayosuna lista vacia
Aby := 0p+/In(ag)/2
Searvour, - . - rout, ray0S CON orientaciofy = 6 — Af, ...0 + Afy con incrementd
Para cadar,,; con desviaciomo;, = 6; — 0
Inicializar Profundidada O
Mientras (Profundidad< PROFUNDIDAD_MAXIMA)
Calcularp el punto de interseccion dg,; con el objeto méas cercano
Calcularr,.r el rayo reflejado pors,: enp
Calcularr;,, el rayo del transductor a
CalcularAk el angulo entre, ¢ Y rour
CalcularAn el angulo entre la orientacién del transductey,y
4 = o 286205+ 102 [05+ K2 /1G)
Sia > ag
Calculard distancia recorrida pot,,
Afadir (roys, d) alistaRayos

Sino
Yout ‘= T're
Profundidad:= Profundidadr1
FinMientras

FinParaCada
Devolver el alcance de,,; con menor recorridd enListaRayos

Tabla 3.2: Algoritmo de simulacién del sonar
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Aqui estamos realizando una importante simplificacién para hacer tratable el algorit-
mo. En el modelo del sonar consideramos que el reflejo de un pulso de sonido es un
haz, sin embargo en el algoritmo de simulacién esto lo tenemos en cuenta Unicamente
a efectos del calculo del rayo entrante emitido hacia el transductor y no para seguir
trazando rayos reflejados. El Unico rayo reflejado que se considera es el principal, el
gue coincide con la direccién de reflejo.

El trazado del rayo reflejado termina cuando se alcanza un niimero de rebotes deter-
minado.

e Por Ultimo, una vez realizado el trazado de todos los rayos emitidos, se devuelve la
menor distancia recorrida. En el caso en el que ningun rayo haya vuelto al sensor, se
devuelve un valor arbitrario que indica que no hay rebote.

Como ejemplo de funcionamiento, en la figura 3.19 se muestra la simulacién del sonar
en un entorno idéntico al recinto en el que se realizaron las mediciones de la figura 3.7.
Como dato curioso se acompafia la figura de las lecturas reales, haciendo notar que no se ha
realizado ningln proceso de ajuste de los parametros del modelo.

Resaltamos la correcta simulacion de los dobles rebotes, como puede comprobarse en la
figura, no conseguida por otros modelos.

Q W O 7

’
f’ — l.
° o
N I_ ‘
b

7 D LY D

Simulacion Lecturas reales

Figura 3.19: Resultado, a la izquierda, de la simulaciéon de 130 lecturas de sonar en un
entorno idéntico al recinto en el que se han realizado las mediciones. A la derecha se
muestran los resultados reales de las mediciones. Tanto en la simulacién como en los datos
reales aparecen rodeadas las lecturas producto de dobles rebotes.
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3.4.3 Parametros del modelo y del algoritmo

Sirevisamos el algoritmo y el modelo del sensor, comprobaremos que existen tres parametros
de cuyo valor va a depender el comportamiento del sonar. Se trataxdey ao. Los dos
primeros determinan, respectivamente, la extension angular del haz emitido por el sonar y
del haz de sonido reflejado en un obstaculo. Ambos se comportan igual, cuanto mayores
sean, mayor sera la extensién angular del haz y mayor sensibilidad (e imprecisiéon) tendra el
sonar. El dltimo parametro determina el umbral del transductor. En la figura 3.20 se muestra
el resultado de simular 130 lecturas de sonar en el mismo entorno con distinto valores de
parametros.

Hay que hacer notar que, para una lectura con un determinado angulo, la variacion de la
medida no es continua con la variacion de los parametros. Por el contrario, se manifiesta en
la simulacién urefecto de escalégue hace que la distancia calculada por un sonar cambie
bruscamente frente a una pequefia modificacién de los parametros.

Para demostrar este efecto, se recogieron los resultados de la simulacion de un sonar en
una configuracién de esquina, variando los parameégreatre 0.05y 1.5 o entre 0.05 y
1.5. La representacion de los resultados se muestra en la figura 3.21. Como se observa, los
valores medidos por el sonar simulado son, alternativamente, 100, 210 y 350 centimetros,
definiéndose un comportamiento marcadamente multimodal del modelo. Existe también una
combinacién de parametros que hace que el sonar no detecte obstaculos. En la simulacion
el alcance maximo del sonar se fijé en 500 cm.

Modificando estos parametros es posible ajustar la simulacion a los valores reales pro-
porcionados por cada uno de los sonares. Debido a que, como ya mencionamos, el compor-
tamiento de los sonares del anillo es muy dispar se debera realizar un ajuste de parametros
independiente para cada uno de los sonares. En el siguiente apartado se presenta el proceso
de ajuste y los resultados del mismo.
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6,=0.1
6,=05 K= 0.5

Figura 3.20: Resultado de la simulacion de 130 lecturas de sonar en el mismo entorno,
variando los valores de los parametros del algoritmo de simulacion.
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Figura 3.21: Variacion de la lectura del sensor para un angulo determinado cuando se varia

6o entre 0.05y 1.5 ¥o entre 0.05y 1.5.
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3.4.4 Ajusteoff-line de los parametros del modelo

Para ajustar el modelo debemos encontrar los valores de sus parametros que optimizan la
simulacion, haciendo que ésta se acerque lo maximo posible a los valores tomados por el
sensor en el mismo entorno.

Formalmente, buscaremos para cada sonar aquellos valores de los parametros que mini-
micen la siguiente expresion

N
X2 = _(xi = f(xi, 6o, ko, a0))>, (3.11)
i=1

siendoN el nimero de lecturas realizadas para el ajusti®s valores de alcance medidos
en las lecturas ¥ (x;; y) el valor medido por el simulador correspondiente a la lectoom
los valores de los parametréskg Y ag.

La ecuacion del modelo impide una resolucién analitica del ajuste, ya que no es posible
calcular las derivadas de la ecuacién 3.10. Ademas, en el apartado anterior se comprob6 que
el comportamiento del modelo tiene forma de funcion escalon, debido a que las desviaciones
en los parametros del modelo hacen que una lectura dada varie entre dos o tres valores muy
distintos (100, 210, 350 cm.no obstaculopor ejemplo, en la figura 3.21) sin tomar valores
intermedios. Por ello, tampoco sera posible calcular de forma numérica las derivadas de la
ecuacion 3.11.

Dado que el nUmero de parametros es pequefio, hemos optado por realizar una bdsqueda
exhaustiva de los valores de los pardmetros, variando todos ellos desde 0.0 hasta 1.0. Si el
modelo hubiera tenido un nimero mayor de parametros la busqueda exhaustiva no hubiera
sido eficiente, teniendo que recurrir a métodos estocasticos cosimowgated annealing
la busqueda genética.

Los resultados obtenidos para cada uno de los sonares se muestran en la tabla 3.3, y un
ejemplo de dos sonares ajustados se muestra en la figura 3.22.
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sonar 4 real sonar 4 simulado

sonar 19 real sonar 19 simulado

Figura 3.22: Ejemplo del resultado del ajuste de dos sonares, comparando su simulacion
con las lecturas reales.
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[Sonar|[ 6o | no [ ag [ Sonmar| 6o | no [ ao |

0 0.65| 0.05 | 0.00 12 0.50 | 0.50 | 0.60
1 0.90 | 0.50 | 0.60 13 0.50| 0.25| 0.40
2 0.85| 0.05| 0.00 14 0.65| 0.95| 0.80
3 0.70 | 0.15| 0.20 15 0.85| 0.20 | 0.40
4 0.50| 0.25| 0.40 16 0.25| 0.95| 0.20
5 0.75] 0.25| 0.60 17 0.85| 0.05| 0.00
6 1.00 | 0.20 | 0.40 18 0.80 | 1.00 | 0.60
7 0.50| 0.35| 0.40 19 0.90 | 0.95| 0.60
8 0.80 | 0.10 | 0.20 20 0.70 | 0.15| 0.20
9 0.70 | 0.15| 0.20 21 0.80 | 0.55| 0.60
10 0.45| 0.85| 0.00 22 0.75| 0.45| 0.60
11 0.70 | 0.15| 0.20 23 0.85| 0.80 | 0.60

Tabla 3.3: Resultados del ajuste de parametros para los 24 sonares de PIXIE.
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3.5 Modelo estocastico

Una vez detallado el modelo del sonar y el algoritmo que lo simula, pasamos a definir el
célculo de la funcién de verosimilitugl(z| x) del sensor. En primer lugar daremos una
formulacion para el caso de un Unico sonar, y a continuacion la ampliaremos al caso de un
anillo.

3.5.1 Sonar Unico

Seax = (04, ..., 04, x, y,0) un entorno definido por las caracteristicas geométricas de los
objetos que lo formaitoy, ..., 0,) Y por la posicién del sonat, y), y la orientacion del
mismoé. Seaz = r,.,; una lectura de distancia,.,, realizada por un sonar.

En una primera version, para calcular la verosimilitud de que la distapgishaya
sido producida en el entornq se aplica en este entorno el modelo del sonar, calculando
la distanciar,;,, devuelta por un sonar en la posici¢n, y) y con la orientaciérg. La
verosimilitud se calcula entonces como una distribuciéon normal truncada:

. 2
p(rreal | 017 ceey On’ x7 yv 9) = ef((p(rreal’r,\'lm)/zg )7 (3.12)
donde
(rreal - rsim)z Si Vreal < Vmax y Tsim < Vmax
¢(rreala rsim) = L1 Sl Treal = Tmax Y Vsim = Vmax > (313)

02 en otro caso

y p1 €S una constante cer@aa 1 para el caso en el que ambas lecturas devuelvan una lectura
maxima (no existe obstaculo frente al sensagp) ¥s una constante de penalizacién para el
caso en que la lectura simulada o la real devuelvan una lectura maxima cuando la otra no lo
hace.

El problema de esta version inicial es que asume un modelo gaussiano del ruido, cuando
esto no es correcto. Recordemos que pequefias variaciones de los parametros del modelo o
de la orientacion del sensor producen grandes cambios en el valor devuelto por el sensor (el
efecto de escalogue aparecia en la figura 3.20).

En la version final de la funcién de verosimilitud introducimos una componente estocas-
tica en forma de ruido gaussiano afiadido a los pardmetros delonodéhorientacion del
sonar. El algoritmo para calcular la verosimilitud es el siguiente

1. Generar las lecturas, . . ., r, repitiendo la simulacion afiadiendo ruido gaussiano a
los pardmetros del model a laorientacion del sonar.

2. Buscar el valor; mas proximo a.,;.
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3. Calcular la verosimilitud aplicando la ecuacién 3.12 a las leciasy r;

p(rreal | 015 L] On’ xv yv 9) = e_((p(rrml’ri)/ZO-Z)‘ (314)

Este algoritmo, a diferencia de la primera versién, produce una funcién de verosimilitud
multimodal, mucho mas acorde con las caracteristicas del sensor de ultrasonidos.

En lafigura 3.23 se puede comprobar el resultado de esta formulacion. En ella se supone
gue el robot y su anillo de sonares se encuentra centrado en la habitacion. Se han generado
uniformemente 40000 posiciongs alrededor del robot y se ha supuesto que cada una de
ellas define una lectura real La distancia; es la distancia entre la posicigpy el robot, y
la orientaciorg; correspondiente a la lectura se define por la orientacion de la recta que une
pi con el centro del robot. Una vez definidas cada lecturay cada orientacion, se ha calculado
su verosimilitud dado el entorno y la posicion del robot, y se ha dibujado la pogicida
la lectura con un tono de gris proporcional a la verosimilitud. De esta forma, cuanto mas
oscura aparece una posicion, mayor es la verosimilitud de su lectura asociada.

3.5.2 Anillo de sonares

Para calcular la verosimilitud de las lecturas de un anillo aplicamos el modelo anterior a
cada uno de los sonares que lo componen, y calculamos la probabilidad conjunta de todas
las lecturas.

Al ser lecturas independientes, podemos aplicar la siguiente expresion

n

p(Zl, 7Zn |017 ---70n7x7 yae) = l_[p(zl |019 "-aonvx’ }7791'), (315)
i=1
dondes es la orientacién de referencia del anillg; yfa orientacion individual del sonar que
ha producido la lecturg,. Para calcular las lecturas simuladas actualizamos el modelo del
sonar con los parametros propios del sonar que ha realizado la lectura.

3.6 Discusioén

Se ha presentado en esta seccion un modelo del sonar realista, que es capaz de simular con
notable fidelidad el comportamiento de los sensores de ultrasonidos, modelandose correc-
tamente lecturas que previamente eran despreciadas como errores. La simulacion se basa
en una adaptacién del algoritmo tlazado de rayoscon el que se sigue el recorrido de los
haces de ultrasonidos y sus rebotes con el entorno.
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L

Figura 3.23: Verosimilitud de 40000 posiciones distribuidas uniformemente alrededor del
anillo de sonares. Cuanto mas oscura aparece una posicion, mayor es la verosimilitud de su
lectura asociada.
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Se harealizado un ajuste de los parametros del modelo a partir de mediciones obtenidas
por los sonares de PIXIE, y se han presentado numerosos experimentos que muestran la
correccion de la simulacion.

Por ultimo se ha presentado un algoritmo estocastico con el que, variando aleatoriamente
los valores de los parametros del modelo, se obtiene una funcion multimodal de verosimilitud
de las lecturas del sensor.
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Capitulo 4

Modelos para la estimacion bayesiana

El paradigma de estimacion bayesiana para los robots moviles se basa en la definicién proba-
bilistica de un modelo del entorno, un modelo de observacion y un modelo de movimiento.

El tipo de modelo del entorno (topoldgico o métrico) influye directamente en la formu-
lacion del modelo de observacion, asi como en el tratamiento del problema del mapeado. El
uso de modelos métricos parametrizables, como los que definimos en este capitulo, permite
estimar posiciones absolutas del robot, asi como buscar, mediante algoritmos de mapeado,
los parametros del mapa que mejor explican una secuencia de movimientos y observaciones
del robot.

El modelo de observacién de las lecturas de sonares de un robot permite evaluar la
probabilidad (verosimilitud) de que unas lecturas se hayan realizado en una determinada
posicion del entorno. Para que un modelo de observacién se ajuste a la realidad hay que
considerar una cierta probabilidad de que las lecturas hayan sido producidas por obstaculos
o caracteristicas no modeladas del entorno.

Por ultimo, el modelo de movimiento evalla la probabilidad de que el robot se encuentre
en una posicion nueva, dada la posicion anterior del mismo y la accion (estimada a partir de
la lectura de odometria) realizada.

La calidad de los modelos de observacion y de movimiento es la clave de una estimacion
bayesiana robusta y fiable.

4.1 Mapas del entorno

Un modelo métrico de mapa de entorno permite que los algoritmos de localizacién deter-
minen la posicion absoluta (coordenada y orientaciorn9) del robot, frente a un modelo
topoldgico en donde la localizacidon no es tan exacta (robot en pasillo, robot al final del
pasillo, etc.).

81
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(0,1000) (500,1000)
(0,750)  (250,750) (750,750)  (1000,750)
(250,500) (350,500)
(500,500) (0,500) (250,500) (550,500)
O]
(0,250)
©
(250,250) (1000,250)
(0,0) (250,0) 0,00  (250,0)

Figura 4.1: Ejemplos de mapas poligonales.

En el capitulo 2 revisamos los distintos modelos de entorno utilizados en la literatura. El
modelo que proponemos se acerca a los modelos CAD utilizados por Burgard (Burgard, Fox,
Henning, y Schmidt 1996; Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y
Thrun 1998), aunque formalizamos su definicion utilizando regiones poligonales, que van a
permitir construir modelos parameétricos del entorno.

Un mapa del entorno se define mediante una region poligonal (poligono simple cerrado)
cuyos vérticesp1, po, ..., p,) representan coordenadas en el planc£ (x, y)). Las aris-
tas(a; = p1p2, a» = paps, ..., a, = p, p1) representan los limites de la region poligonal y
estan etiquetadas con ABIERTO o CERRADO, dependiendo de si definen una zona abierta
o cerrada (pared). Algunos ejemplos de mapas del entorno se muestran en la figura 4.1.

Las coordenadas de los vértices pueden utilizar un conjrto(ds, . .., d,) de para-
metros para definir modelos genéricos paramétricos. Por ejemplo, en la figura 4.2 se define
un modelo con tres parametros que permite modelar desde un final de pasillo hasta una
esquina.

La definicion paramétrica de los modelos del entorno permite formular el problema del
mapeado como un problema de estimacion de parametros. La utilizacion de estos parametros
para definir las posiciones de los vertices proporciona libertad suficiente para definir un
amplio conjunto de modelos y para introducir restricciom@docque acoten la busqueda.
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(0,1000) (d1+d2,1000)

d3

(d1,1000-d2)

(d1+d2,1000-d2)

d2

(0,0) (d1,0)

“—>

dl

Figura 4.2: Ejemplo de mapa poligonal definido mediante los paramatradsy ds.

4.2 Modelo de observaciéon

Un modelo de observacion proporciona una estimacion de la funcion de dep&idad¢).
Recordemos que en el enfoque bayesiano esta funcién de densidad mide la verosimilitud de
gue unas medidas= (z1, ..., z,) hayan sido producidas en una configuracidiel modelo

gue se estd estimando definido por los parametrdsn nuestro cas@jy, ..., z,) son las
lecturas tomadas por un barrido del anillo de sonares del robot m&aoh) las posiciones

del robot en el modelo del entornapyson los parametros que definen el mismo.

En adelante supondremos un modelo fijo de entorno, por lo que utilizanetnps) en
lugar dep(z| X, ¢).

Un buen modelo de observacion debe adecuarse lo mas posible a las probabilidades reales
de p(z|x). Seria ideal construir este modelo a partir de datos estadisticos de las lecturas
reales del anillo en diferentes configuraciones del entorno. Sin embargo, el alto nimero de
configuraciones posibles (todas las posiciones del robot en todos los posibles modelos de
entorno) y la alta variabilidad de las lecturas hacen, en principio, que este enfoque no sea
factible.

Usaremos el modelo del sensor formulado en el capitulo 3 como base de construccién
de la funcion de verosimilitud. Dada una posicién del robot en el entorno, podemos ob-
tener lecturas simuladas de los sonares y compararlas con las lecturas reales, dando mas
verosimilitud a las reales cuanto mas se parezcan a las simuladas.
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Para simplificar la formulacion supongamos que deseamos estimar la verosimilitud de
una Unica lectura; obtenida desde la posicién Formalmente, el modelo del sensor define
una funcién de probabilidad para las lectugas | x), a partir de la que formulamos la
verosimilitud dez; como p(z; | X). Al ser p una funcién de probabilidad sin una férmula
analitica, no es posible evaluar esta verosimilitud directamente. Si embargo, es posible
muestrearp, aplicando los algoritmos de simulacion del modelo del sonar y geiérar
lecturas simuladag (x), ..., I, (X). Utilizamos, entonces, estas lecturas simuladas para
representap como una suma de distribuciones normales centradas en cada una de estas
lecturasresultantes. De estaforma, es posible calg@arx) a partir de estas distribuciones
normales. Recordemos que el modelo del sensor ha sido ajustado mediante lecturas reales,
por lo que podemos afirmar que la funcion de verosimilitud se estima, de forma indirecta, a
partir de datos reales.

Elmodelo de observacion que se formula en esta seccion contempla ademas la posibilidad
de que algunas lecturas hayan sido causadas por obstaculos no modelados.

En los siguientes apartados se formula de forma general la funcién de probabilidad
condicional, considerando las dependencias entre variables aleatorias. Después se concreta
el modelo de observacion, definiendo cada una de las distribuciones que intervienen en su
formulacion. Por dltimo se proporcionan ejemplos y resultados del modelo definido.

4.2.1 Formulacion general

Las lecturaz = (z3, ..., z,) Son lecturas contiguas de un anillo circular de sonares (las
lecturas; y z;+1 SONn contiguas, asi como la lectukay laz,,) y todas se realizan en el mismo
instante de tiempp. La orientacién asociada a cada lectura de sgnlardenominamos;.

Para modelar la posible presencia de obstaculos, se define una variable afeatoria
{0, 0} con una probabilidag(0) = g de presencia de un obstaculo y una probabilidad
p(0) = 1 — g de que no exista obstaculo en la direccion de la lectura de sonar que se esta
considerando.

De forma general, la verosimilitud del conjunto de lecturas la podemos formular como
p(z1, 22, ..., zn | X, @), dependiendo del entormoy de la existencia de algun obstacdio
Desarrollando la expresion, se obtiene

P, 22, .-, 20 | X, D) =
p(Zl|X9 cD)I’(ZZlZl,X, Q)p(zn|Z1,ZZa-aanl’Xv q)) (41)

El caso de que no haya obstaculos en el entorno, consideramos que todas las lecturas
son independientes entre si, dependiendo Unicamente de la configuracion del entorno

P(zi | zj2i, X, 0) = p(z; | X). 4.2)
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Sin embargo, las lecturas producidas por obstaculos no las consideramos independientes,
ya que suponemos obstaculos con una cierta extensién angular. Por ello, lecturas cercanas
angularmente tendran valores similares, ya que van a ser afectadas por el mismo obstaculo.

Esto lo formulamos definiendo un entorgl de lecturas afectadas por un obstaculo
detectado por la lectueg, y restringiendo a dicho entorno la dependencia entre las variables

i | Zj2i, % 0) = p(i | Zjeg,;» X, 0), (4.3)
donde consideramos como entornazga las lecturas anterior y posterior

{i—1,i+1} siie{2,n—1}
Gi=1 {n2} sii =1
{n—11 Sii=n

Aplicando estas consideraciones a la ecuacion (4.1), se puede formular la funcién de
verosimilitud como

P(1,22, - Zn | X, @) =
n—1
PELIX @) - p@alze Za-1. X, D) - [ [ PGl 2, X, ®). (4.4)
i=2

Para calcular todos los términos de esta expresidn, debemos formular las probabilidades
condicionales que aparecen en la misma.

Primero detallamos algo més la ecuacion (4.3), en donde se formula la probabilidad
condicional de una lectura dadas las lecturas contiguas, la representacién del entorno y
dada la existencia de un obstaculo frentg.aSe deben contemplar dos casos: o bien el
obstaculo frente g; ha sido detectado por alguna lectura contigua, o bien ninguna lectura
contigua lo ha detectado. Para ello se descompone el evéakistencia de un obstaculo
frente az;) en dos eventoso;, que denota el caso en que el obstaculo ha afectado alguna
lectura contigua & y o2, que denota el caso contrario. Las probabilidades de ambos eventos
deben sumag:

p(o1) = q1, p(02) = q2 | atq2=q.

En el casw; la probabilidad de; depende de los valores de las lecturas contiguas, ya
gue se supone que alguna de ellas ha detectado el obstaculo que hay frentguea z;
debera dar un valor similar a ésta

P(zi | z2j2is X, 01) = p(zi | ZjeG,) (4.5)
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En el caswy, en el que el obstaculo frente a la lectura no ha sido detectado por ninguna
lectura contigua, estas lecturas no aportan ninguna informacion sobre la posicion del obs-
taculo, por lo que la probabilidad deno depende de ninguna de ellas, sino de la presencia
del obstaculo y del entorno

P(zi | 2jzis X, 02) = p(zi | X, 0) (4.6)

Tras alguna derivacion, utilizando teoria basica de probabilidad y las ecuaciones (4.2),
(4.5) y (4.6) se llega a las siguientes expresiones (4.7), (4.8) y (4.9) que definen las proba-
bilidades condicionales usadas en la funcién de verosimilitud anterior (4.4)

pzi | X, ®) =gp(zi|X,0) + (A —q)p(zi | X) 4.7)
p(zi | zie1, X, ®) = q1p(zi | zi-1) + q2p(zi | X, 0) + (1 — q) p(zi | X) (4.8)
Pl zic, ziv1, X, @) = q1p (i | Zic1, 2iv1) + @2p(zi 1%, 0) + (L —q)p(zi X)) (4.9)

La ecuacion (4.7) establece que la verosimilitudzddepende de la verosimilitud de
gue dicha lectura haya sido producida por un obstaculo en el emtppunderada por la
probabilidad de que exista un obstaculo, y de la verosimilitud de la lectura dado Unicamente
el entornax, ponderada por la probabilidad de que no exista ningln obstaculo.

Las expresiones (4.8) y (4.9) definen las probabilidades condicionales de unajgectura
en funcién de lecturas contiguas, el entorno y la presencia de un obstaculo.

4.2.2 Funciones de probabilidad condicional

En esta seccién se definen las funciones de probabilidad condicional en las que se basa
la funcién de verosimilitud (4.4). Estas funciones sa@; | X), p(z; | X, 0), p(zilzi—1) Y
P(zi | Zi—1, Ziv1)-

La primera de ellas define la verosimilitud de una lectiirdada una posicior en el
entorno.

1 1:(X) — z;)?
p(zi|X) = Z Nz EXP(—%)P@ (X)) (4.10)

L; (%)

Esta densidad se formula como una suma de distribuciones normales con desviaciones
tipicaso; centradas en las lecturagx) proporcionadas por el modelo simulado del sonar
en la posiciork. Recordemos qui(x) es una variable aleatoria definida por el modelo del
sonar y que modela la lectura realizada por el sonar en la diregcdmuna posiciomn del
entorno.

La segunda funcién de densidad define la verosimilitud de una lectura dado un obstaculo
y una posicion.
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1/(Ky —ri(X)) Ks <z <ri(X)

P(ilx, 0) = { 0 para cualquier otro valor (4.11)

Esta densidad se define como una distribucion uniforme en el intetkalo; (x)),
siendoK la distancia de seguridad de los métodos de navegacién local (distancia en la que
€s seguro que no existird un obstacule)(x) la menor distancia desaea un segmento del
entorno en la direccié.

Por dltimo, las distribuciones condicionale&; | z;) y p(zi | z;, zx) sS€ modelan, respec-
tivamente, como una distribucion normal centrada eycomo una suma de dos normales
centradas en; y z; en el segundo.

1 (Zi - Z,')z
7)) = —— exp(—— i) 4.12
1202 = 1 exp(— (zi — Zj))z) N 1 exp(— (zi — Zk))z) @13)
PR 2o 202 Nz 262

4.2.3 Experimentos

En esta seccién presentamos un ejemplo representativo del funcionamiento del modelo de
observacion.

I!' p—

Figura 4.3: Representacién de la funcidn de densidad de las lecturas depsonas), para

una posiciér(x, y) fija del robot en un entorno de final de pasillo centrado en la posicién en

la que se han tomado las lecturas. A la izquierda nuestro modelo, a la derecha el modelo de
(Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y Thrun 1998).
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Figura 4.4: Situacion de PIXIE en el experimento con el modelo de observacion.

Utilizamos la funcién de verosimilitugh(z | x) para encontrar la posicion de maxima
verosimilitud de PIXIE en un final de pasillo, a partir de lecturas realizadas por su anillo
de sonares. Comprobaremos que la funcién de probabilidad propuesta mejora mucho los
resultados que se obtienen utilizando un modelo mas sencillo del sensor, como el propuesto
por (Fox, Burgard, Thrun, y Cremers 1998b). En este modelo se simula la distancia obtenida
por un sonar como la distancia al elemento del entorno mas cercano en la orientacién del
sonar. En la figura 4.3 se muestran las funciones de densidad producidas por cada uno de
los modelos.

Es importante resaltar, para colocar los resultados en su justa medida, que el barrido
se han extraido del conjunto de lecturas de la figura 3.8, lecturas con una gran cantidad de
ruido producido por la presencia en el pasillo de multiples columnas y por la abundancia de
puertas (ver fotografia en la figura 4.4).
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\ /
— &

N4 .

Figura 4.5: Superior: Barrido de 24 lecturas del anillo de sonares en la posicién del robot
en la que se tomé el barrido . Inferior izquierda: posicidon de maxima verosimilitud con
la funcién propuesta. Inferior derecha: posicion de maxima verosimilitud con la funcion
simplificada.

El experimento ha consistido en, dadas unas lecturas de los sonares (ver figura 4.5),
buscar la localizacior = (x, y, 8) de maxima verosimilitudx,,;y) suponiendo conocido
las dimensiones del final del pasillo.

Esta localizacién es aquella para la que el modelo de observacion devuelve una proba-
bilidad maxima, esto es

Xyy = argmaxp(z| x).
X

En este ejemplo no se considera el modelo de movimiento del robot, ni las probabilidades
a priori de las configuraciones, ya que se pretende mostrar el comportamiento aislado de la
funcién de verosimilitud.

Las tres componentes de la posicion se han discretizado para poder llevar a cabo la ex-
perimentacion. Se ha calculado, para el barrido de lecaygsverosimilitudp(z | x, v, 0),
con

H, = {20,40,60,...,420, (21 hip6tesis
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Parémetro# Valores reale# Maxima verosimilitud l\ Maxima verosimilitud 2\

X 190 cms. 150 cms. 290 cms.
y 80 cms. 90 cms. 110 cms.
0 180 grad. 170 grad. 0 grad.

Tabla4.1: Comparacionde la posicion real de PIXIE (primera columna) con de las posiciones
de méxima verosimilitud de nuestro modelo de observacion (segunda columna) y del modelo
de observacion de Fox (tercera columna).

H, = {20,40,60,80,100 (5 hipotesis
Hy = {91827, ...,360 (40 hipétesis

El resumen de la comparacion entre ambos modelos de observacién se muestra en la
tabla 4.1. Se puede comprobar que la correccion del modelo propuesto es, en este caso,
mucho mayor que la del propuesto por Fox. La posicién real del robot es (190,90,180),
la calculado con nuestro modelo es (150,90,170) y la calculada con el modelo de Fox es
(290,110,0).

Es interesante observar qué valores de probabilidad calculan los modelos de observacion
para el todas las posibles posiciones del robot. Para ello representamos (figuras 4.6 y 4.7)
los las probabilidades marginales de dos de los parametros variando el tercero. Podemos
comprobar que el modelo de observacion propuesto es mas sensible y selectivo (ademas de
exacto) que el de Fox.

Por dltimo, en la figura 4.8 se representa la verosimilitud marginaledgcon respecto
ao,

PEltety) =Y p(zlte ty, 0).
6eHy
Esta marginal puede entenderse como la informacién que proporciona la funcion de verosi-
militud sobre la localizacion de PIXIE en el pasillo.
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Figura 4.6: Funcion de verosimilitud propuesta. Verosimilitudes marginales dey 6.
Posicion real del robott = 190,y = 80,6 = 180.
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Figura 4.7: Funcion de verosimilitud de Fox. Verosimilitudes marginales,dey 6.
Posicion real del robott = 190,y = 80,6 = 180.
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Figura 4.8: Funciones de verosimilitud marginalde y con respecto a la orientacion.
Izquierda: funcion propuesta. Derecha: funcion de Fox. Posicion real del robott 90,
y = 80,6 = 180.
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4.3 Modelo dinamico

En muchos problemas de estimacion temporal (seguimiento de objetos en imagenes, por
ejemplo) el sistema no proporciona ninguna informacién sobre su evolucién o es muy com-
plicada la obtencién de la misma. Por ejemplo, supongamos la primera instantanea de una
pelicula de una persona caminando. En ausencia de mas informacioén es muy complicado
dar una estimacion de hacia dénde se movera laimagen de la persona. Es necesario entonces
suponer un modelo a priori de la evolucion temporal del sistema. Por ejemplo, se puede
suponer que en el tipo de secuencias que se analizan las personas se mueven hacia la derecha,
0 se mueven con una velocidad constante.

En el caso de los robots moviles, sin embargo, se tiene la ventaja de que el sistema
proporciona informacion de su evolucion, mediante lo que se den@damaetria El robot
va integrando los incrementos de posicigry y de orientacio® medidos con contadores
(shaft encodeissituados en sus partes moviles. Estas medidas permiten estimar incrementos
pequefios de posicion del robot, pero no es aconsejable su uso para localizarlo en periodos
largos, debido al alto error acumulativo de las mismas.

El modelo de movimiento del robot se puede formular, pues, a partir de las posiciones
del robot proporcionadas por la odometria. Supongamos que las posiciones estimadas por
odometria en el instante anterior 9Gn_1, y;_1, 0,_1), y en el instante actuak;, y,, 6,). El
desplazamiento lineal del robot estimado por odometriad entre el instante — 1y el
y el desplazamiento angular del mismg 10 se pueden estimar como

At—lfi = \/(xt — X 1) + (yt - )’t 1)2 (4-14)
N1 = 6, —6,_4 (4.15)

Podemos definir entonces una variable aleat&ja;d que define el desplazamiento
real del robot dado un desplazamiento ;d medido mediante la odometria. Su funcién de
densidad se define como una distribucién normal de meediad y desviacion tipicar,

1 (Arad — A ad)?
N 2roy 20')62
Una vez definida la variable aleatoria_1d es posible formular las posiciones del robot

en el instante, x, e y,, como variables aleatorias calculadas a partinngded, y de las
posiciones en el instante anterior

p(A_ad | A d) =

exp(— ) (4.16)

X; = X;_1+dcog6,_1) (4.17)
Vi = Yyi—1+dsin@,_1). (4.18)
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Las funciones de densidad dee y, se pueden calcular y muestrear a partir de las
ecuaciones 4.15,4.16y 4.18.

La orientacién del robot en el instantgd;, la formulamos también como una variable
aleatoria con funcién de densidad normal centrada en la orientacién estimada

(0 — (Br—1 + £,_10))2

6, | Ar_10) =
PO | A—10) 2602

exp(— ) (4.19)

1
\/27'[0'9

4.4 Discusion

En este capitulo se han propuesto distintos modelos necesarios para la localizacion y el
mapeado bayesianos.

En primer lugar, se ha presentado un modelo paramétrico de mapa de entorno, basado
en regiones poligonales. La posibilidad de definir las posiciones de sus vértices de for-
ma paramétrica dota al modelo de gran flexibilidad y permite formular de forma sencilla
restricciones geométricas en los mapas de entorno.

En segundo lugar, se ha propuesto un modelo de observacion robusto basado en el
modelo del sonar del capitulo anterior y en una formulacion probabilistica que contempla la
posible presencia en el entorno de obstaculos no modelados. Se ha comprobado, con datos
obtenidos del robot PIXIE, que el modelo es mas robusto y fiable que otros modelos mas
simples presentados en la literatura.

Por dltimo, se ha presentado un modelo de movimiento que define la probabilidad de
localizacion del robot, dado una localizacion anterior y unos datos de odometria.
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Capitulo 5

Localizacion basada en filtros de
particulas

La formulacién bayesiana del problema de localizacién global choca con un problema fun-
damental: ¢cémo representar la funcién de probabilidad a posteriori?. Esta funcion de
probabilidad estima las posiciones mas probables del robot. Normalmente, debido al ruido
producido por obstaculos no modeladoa ambigledades en la percepcion del entorno, esta
funcion sera multimodal, esto es, existirdn posiciones muy distintas con alta probabilidad de
gue el robot se encuentre simultdneamente en ellas.

La mejor solucién planteada hasta el momento ha sido la utilizacion deejilleade
probabilidad una rejilla que discretiza el espacio de estados (todas las posibles posiciones
del robot en el entorno). Los algoritmos de localizacion que utilizan esta solucién calculan
la probabilidad de que el robot esté situado en cada una de las celdillas utilizando el modelo
bayesiano. Sin embargo, esta solucion tiene un alto coste espacial, computacional y obliga
a definir las dimensiones de las celdillas de foadahoc

En este capitulo se presenta el fithaotstrap el cual resuelve el problema representando
la funcién de densidad por un conjunto de muestras extraidas de la distribucién.

5.1 Introduccién

En este capitulo se describe un algoritmo de estimacién muestral de la densidad de probabi-
lidad a posteriorp(x; | Z, A'"!) que define el estado del robot.

Taly como se formul6 en el capitulo 2, esta densidad de probabilidad representa el estado
del robot en el instante actuad,, dadas unas observaciones realizadas por sus sensores,
7' ={z1, ..., 7}, y una secuencia de acciones realizadas! = {a;, ..., a,_1}.

97
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Si resumimos la formulacién del capitulo 2, podemos descomponer el problema del
célculo dep(x, | Z', A'~1) en dos pasos: prediccién e integracion de las observaciones.

1. Prediccion.

En este paso se utiliza slodelo de movimient{ver seccion 4.3) para predecir la
posicion del robot en el instante actual, a partir de la densidad de probabilidad del
instante anterior. Esta densidad se puede calcular mediante la integracion

px |27 AT = / PO | X—1, -1 p(X_1 | Z'71 ATTY). (5.1)

Xr—1
2. Integracion de las observaciones

En el segundo paso se integran las observaciones realizadas en el instante actual,
z;. Para ello se utiliza ahodelo de observacidfver seccion 4.2) y se ponderan las
probabilidades obtenidas por la fase anterior en funcién de la verosimilitud de las
lecturasz,, para obtener la densidad a posteriori

PO Z! AT = aip(z %) p(x | Z'7H AT (5.2)
La constantey, es un factor de escala que aseguraj;yp(xt) =1.

Tal y como se revisd en la seccion 2.5.3, existen varios enfoques para obtener una
representacion de la densidad 5.2 (filtro de Kalman, modelos topoldgicos y rejillas de pro-
babilidad), pero todos ellos presentan distintos problemas.

La solucién que planteamos es la representacion de la densidad mediante un conjunto
de muestras extraidas de dicha distribucion. En el siguiente apartado se presenta el filtro
bootstrapque realiza este muestreo.

5.2 Filtro bootstrap

Presentamos en este apartado el fittomtstrap propuesto por Gordon et. al. (Gordon,
Salmond, y Smith 1993). Se trata de un filtro en el que la densidad a posteriori se repre-
senta mediante una distribucion de particulas en el espacio de estados. Este enfoque se ha
desarrollado de forma independiente en los Gltimos afilos en campos como la estadistica, la
economia o la vision artificial (Kitawa 1987; West 1992; Gordon, Salmond, y Smith 1993;
Isard y Blake 1996; Kitawa 1996; Carpenter, Clifford, y Fernhead 1997; Pitt y Shephard
1997). Los nombres con los que se ha denominado este enfoqivosde Carlg CON-
DENSATIONe Importance Resampling Filteraunque Ultimamente se esta utilizando el
términofiltros de particulagpara todos ellos.
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Son propuestas similares que propagan las particulas (muestras de la funcién de densidad
a posteriori) utilizando el modelo de movimieni®x, | X,_1, &) y el modelo de verosimilitud
p(z: 1 %;) , deformaque el peso combinado de las particulas de unaregién aproxima laintegral
de la funcién de densidad a posteriori en esa region.

En concreto, el filtrdootstraprepresenta la densidad a posteriori mediante un conjunto
de N muestragmyg, ..., my) Yy sus probabilidades asociadas, ..., 7y).

Inicialmente, el conjunto de muestras se escoge a partir de la distribucion gpxigri
Si no existe informacion a priori, entonces las muestras se distribuyen uniformemente por
el espacio de estados. Posteriormente, en cada instante de tiesgactualizan lag/
muestras en funcién de la accion antegor, y la observacién actuaj.

Para ello, (fase 1 del algoritmo) se aplica el modelo de movimigig| X; 1, & _1)

a cada una de la¥ muestras, generando un nuevo conjunto de muestras. Estas muestras
representan la prediccion de la variable de estado, sin considerar la observacion. Para
considerar la observacion (fase 2 del algoritmo), se obtiene elpessociado a cada
muestra segun la verosimilitud de que la observacién haya sido realizada en un estado del
sistema definido por la muestma(z; | X;).

En un dltimo paso (fase 3 del algoritmo), se remuestrea el conjunto de muestras, extra-
yendo (con reemplazay muestras del conjunto actual, con probabilidad proporcional al
peso de cada una. En este nuevo conjunto, por ejemplo, desapareceran las muestras para las
gue no hay evidencia de verosimilitud. Una vez construido el nuevo conjunto de muestras,
se escalan los pesos asociados a cada una para que representen la probabilidad asociada a
cada muestra. Este nuevo conjunto de muestras constituye una representacion muestral de
la probabilidad a posteriori. En la tabla 5.1 se detalla este algoritmo y en la figura 5.1 se
explica graficamente la evolucion de las muestras en cada fase.
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Fase de
J | prediccién

Q Q @9 Q

Fase de
actualizacion de
L observaciones

Fase de
| remuestreo

Q QQ 9 Q

Figura5.1: Funcionamiento del algoritinootstrap Lafigura supone que las muestras estan
estimando un Unico pardmetro, distribuido en el eje horizontal. Las muestras se representan
por circulos centrados en el valor del parametro que representan. El area de los circulos
representa el peso de cada muestra.
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Algoritmo BOOTSTRAP

A partir del conjunto anterior de muestrasM,_; =

{mt 7, ...,m",, 7Y )} en el instanter — 1, construir un nue-
vo conjunto de muestradl, = {(m},z}),...,(m", zN)} para el instante
actualr.

1. Fase de prediccién
Seaa,_; la accion ejecutada por el sistema en el instantel.

Para cada muestral_; € M,_4, predecir su nuevo estado en el instante
t, muestreando la densidad que define el modelo de movimiento

M’ < Muestradep(X, |X,_1=m _;, & 1).

De esta forma, se construye un nuevo conjuntheuestrasi\Z, para
el instante actual.

2. Fase de actualizacion de observaciones
Seaz; la observacion realizada por el sistema en el instante actual

Para cada muestrd! € M,, actualizar su peso asociadp segin la
verosimilitud de que los datas hayan sido observados en el estato

<« p@z |x =m).

3. Fase de remuestrep

Construir el nuevo conjunto d€ muestrasif, remuestreando (con sus-
titucion) el conjuntoM,, de forma que se escoge cada muestiaon
probabilidad proporcional a la verosimilitud de la misfija

Desdei = 1 hastav: 3
(mi, ') < Escoger muestra d¥,

Normalizar todas las probabilidades de las muestras d#, de forma
queY._, 7/ = 1. Paraello
JTi

7.[z<_ t

t ~7 i
ZiTzl T

Tabla 5.1: Filtro bootstrap.
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5.3 Justificacion tedrica

Unajustificacion teérica del funcionamiento del algoritmo se formula en (Carpenter, Clifford,
y Fernhead 1997; Pitt y Shephard 1997). Presentamos a continuacion esta justificacion.

e Fase de prediccion

En estafase se obtiene un conjunto de muestras de la funcién de dersidad 2, A1),
gue representa el estado del sistema, una vez actualizada la ultimaacgidPara
ello usamos el modelo de movimiento y el conjunto de muedtfas del instante
anterior para construir la siguiente funcién de densidad (Pitt y Shephard 1997)

N

POGIZTH AT =) px %1 =M, 8 1). (5.3)
i=1

Esta ecuacion proporciona unamezcla de distribuciones que aprogima’ 1, A1),

Para muestrear esta distribucion es posible utilizar el métonmedstreo estratificado

en el que se extrae una muestra de cada componente de la mezcla. Para ello se aplica
el modelo de movimiento a cada una defasuestras dé/, i, para obtened, .

e Fase de actualizacion

Enla segunda fase se debe utilizar el modelo de observacion para obtener las muestras
M, de la distribucion a posteriopi(x, | Z, A'"Y). La siguiente distribucion aproxima
esta densidad

PO | Z', AN = ap(z, | X)p(x, | 271, AT, (5.4)

La técnica deimuestreo por rechazwer apéndice A) puede utilizarse para muestrear
esta distribucion. Esto es debido a que ladensidad| Z'~%, A’~1) puede muestrear-

se (de hecho, el conjunid, es un conjunto de muestras correctas de esta distribucion)
y la probabilidadp(z; | x;) puede calcularse (mediante el modelo de observacién).

El conjunto de muestras resultantes y sus pesfis,representa la distribucion a
posteriori.

5.4 Aplicacion a la estimacion de elementos topolégicos

Presentamos en esta seccion resultados experimentales gue muestran como se puede aplicar el
enfoque de estimacion bayesiana temporal y el filtrotstrapa la estimacion y seguimiento
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Figura 5.2: Caracteristicas topologicas usadas en el trabajo: pasillos y finales de pasillo. Los
pasillos quedan definidos con tres parametros (distancia a una y otra pared y orientacion) y
los finales de pasillo con cuatro (distancias a las paredes y al final del pasillo y orientacién).

robusto de estas caracteristicas topolégicas, en concreto, pasillos y finales de pasillos (ver
figura5.2). Los modelos de observacién y movimiento que se utilizan son los que se plantean

en el capitulo 4. Los parametros del sistema son distancias a las paredes y orientacion local
del robot con respecto al pasillo. Esta metodologia es genérica y permite ser aplicada a otro
tipo de caracteristicas topolégicas, como conexiones entre pasillos, etc.

La obtencidn de caracteristicas estables y robustas del entorno en un robot movil es el
paso previo para una posterior extracciéon autbnoma de mapas del entorno, localizacién en
el mismo o navegacion de una localizacion a otra (Kortenkamp, Bonasso, y Murphi 1998).
Existe una amplia coleccién de trabajos en los que se proponen métodos para filtrar las
lecturas de sonares y obtener caracteristicas geométricas elementales (Drumheller 1987;
Barshan y Kuc 1990; McKerrow 1993). Sin embargo, las caracteristicas obtenidas en todos
ellos son muy locales, como aristas, esquinas o segmentos, y esta propia localidad hace
gue sean muy sensibles al ruido, poco robustas y poco estables. Esto Ultimo se acentla en
entornos dindmicos y variables, del tipo en los que suelen evolucionar estos robots.

Para comprobar la técnica propuesta se han realizado una serie de experimentos en los
entornos simulados que aparecen en la figura 5.3. En todos los experimentos el robot se
mueve evitando obstaculos a una velocidad de 25 cm/s y realiza una lectura de sensores cada
0.25 segundos. Cada vez que se realiza una lectura se ejecuta un paso teldfitti@ap
La velocidad del algoritmo es aceptable, funcionandgdel tiempo real colw = 300
muestras en un procesador Pentium Il. Futuras optimizaciones del c4digo haran posible la
ejecucion del algoritmo en tiempo real.

En los siguientes apartados veremos ejemplos del funcionamiento del algoritmo en dis-
tintos instantes de tiempo. Dibujaremos las muestras generadas por el algoritmo sobre el
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Entorno 1 Entorno 2

Figura 5.3: Algunos de los entornos de prueba en los que se han realizado los experimentos.
El entorno 1 consiste en un pasillo con dos obstaculos y el 2 un pasillo con mdltiples puertas.

entorno real, y cada muestra tendra un tono de gris proporcional a su probabilidad, siendo
mAas oscuras cuanto mayor probabilidad tengan.

e Experimento 1

Fase de inicializacién

Enlafigura 5.4 se puede observar el proceso de inicializacion del conjunto de muestras
de la caracteristicpasillo. Recordemos que cuanto mas oscura es la muestra mayor
probabilidad asociada tiene. El nimero de muestras utilizadés-e800. El tiempo

de una instantanea a otra es de 1 segundo.

Seguimiento de pasillos con obstaculos

Enlafigura 5.5 se puede ver la continuacion de la situacion anterior. Una vez centrado
el conjunto de muestras alrededor del pasillo real todas las muestras bajan en verosi-
militud al pasar el robot frente a un obstaculo (instantanea 8). En la instantanea 9, el
ruido gaussiano del modelo de movimiento genera algunas muestras de pasillos mas
cercanos al obstaculo, pero la media de la distribucidon no cambia de forma sensible.
En las instantaneas 10 y 11 el robot ha superado el obstaculo, vuelven a realizarse
lecturas del pasillo real y la distribucién se mueve otra vez hacia el pasillo real.

Experimento 2

En la figura 5.6 se comprueba el funcionamiento del algoritmo siguiendo finales de
pasillo en un entorno complicado como el numero 2. La dificultad de este entorno
se debe a que el robot no obtiene ninguna lectura del pasillo cuando pasa frente a
las puertas. El nimero de muestras de este experimento es el mismo que el anterior
(N = 300). Enlainstantdnea 1 se venlas muestrasyainicializadas. De lainstantanea 1
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ala 9 el robot pasa frente a diversas puertas, con lo que las muestras han evolucionado
segun el modelo dinamico del robot, sin ser reforzadas por lecturas del sonar. Sin
embargo, cuando el robot vuelve a detectar el pasillo vemos como en las instantaneas
10y 13 el algoritmo vuelve a reforzar las muestras correctas.

e Experimento 3

Un ultimo conjunto de pruebas (figuras 5.7 y 5.8) se harealizado a partir de las lecturas
de sonar tomadas por PIXIE evolucionando dentro de un pasillo. Aligual que en los
experimentos simulados, el robot se mueve evitando obstaculos a una velocidad de
25 cm/s y realiza una lectura de sensores cada 0.25 segundos. El nUmero de muestras
también es de 300. Cada vez que se realiza una lectura se ejecuta un paso del filtro
bootstrap Las lecturas son especialmente ruidosas, debido a las columnas presentes
en uno de los lados del pasillo.
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Y Percepcion Lo X Y Percepcion e @pd

?‘;' :

Instantanea 1 Instantanea 2

Figura 5.4:Experimento 1. Inicializacion de la caracteristigasillo en el entorno 1.
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=

X

Instantanea 8 Instantanea 9
B ercevcion [N R Pecepcion [N

Instantanea 10 Instantanea 11

Figura 5.5:Experimento 1. Seguimiento del pasillo moviéndose el robot en el entorno 1.
El obstaculo puede verse como un segmento recto paralelo al pasillo.



108 CAPITULO 5. LOCALIZACION BASADA EN FILTROS DE PARTICULAS

= T 5 [ AR

Instantanea 1
B rercepcion _________________JNEISY

Instantanea 10 Instantanea 13

Figura 5.6: Experimento 2. Seguimiento de finales de pasillo moviéndose el robot en el
entorno 2.
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Figura 5.7:Experimento 3. Muestras generadas siguiendo un pasillo en datos reales.
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—— || =
3 4

Figura 5.8:Experimento 3. Posiciones medias estimadas del pasillo. Los puntos represen-
tan las lecturas realizadas por el robot.



5.5. APLICACION A LA LOCALIZACION 111

5.5 Aplicacion a la localizacion

Un segundo grupo de experimentos aplica el filiomtstrapal problema de localizacion
propiamente dicho. Se trata de estimar (localizacion global) y realizar un seguimiento la
posicion globak = (x, y, #) del robot en un entorno conocido de antemano.

Cada muestran; del algoritmobootstraprepresenta entonces una posible posicion
(xi, yi, 6;) del robot en el entorno conocido. EIl algoritmo itera aplicando el modelo de
movimiento a cada una de las muestras y actualizando su peso proporcionalmente a la ve-
rosimilitud de que las lecturas de sonar se hayan realizado desde la posicion global definida
por la muestra.

Se han realizado una gran variedad de experimentos, variando distintos elementos del
filtro, para comprobar su funcionamiento.

Al igual que en los experimentos anteriores, el robot se mueve por el entorno evitando
obstaculos a una velocidad de 25 cm/s y se obtienen lecturas de sus sonares y medidas de
odometria cada 0.25 segundos (4 veces por segundo). En los experimentos 1 al 5 los datos
se han tomado del simulador. En el experimento 6 los datos se han tomado de PIXIE. El
modelo de entorno es el mismo para ambos casos.

e Experimento 1

En un primer experimento (figuras 5.9 5.10,5.11,5.12) se realiza una localizacién
global con el robot moviéndose a lo largo de un pasillo (zona de alta incertidumbre en

la percepcién) y entrando en una zona mas abierta. Las distintas figuras representan el
comportamiento del filtrdvootstrapcon 1000, 343 y 125 muestras respectivamente.

En cada figura se muestran algunas instantaneas de la localizacion, representandose
todas las muestras de la distribucion con untono de gris proporcional a su verosimilitud.
En la parte inferior de las figuras se muestra una grafica con la evolucién del error
absoluto medio de cada parametro a estimar con respecto al tiempo (eje horizontal).

Se puede observar que en una primera fase, mientras el robot se mueve por el pasillo,
las muestras se distribuyen a lo largo del mismo y el error de estimacion de la posicion
x del robot es muy elevado. Esto es debido a que la verosimilitud de las lecturas es alta
en todas las posiciones centrales del pasillo, siempre que el robot esté orientado hacia
la derecha. Por eso, se puede comprobar que el error de estimacién de la posicion

y de la orientacié® es bastante bajo desde los primeros instantes de tiempo.

En el momento en que el robot entra en la zona abierta a su izquierda (alrededor
del instante 18), la localizacion se realiza correctamente, siempre que el nimero de
muestras sea suficiente (1000 y 343). En el caso del experimento con 125 muestras
los resultados no son buenos, debido a que el nUmero de muestras no es suficiente para
ocupar toda la zona verosimil del espacio de estados.
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Por ultimo, en la figura 5.13 se muestra la evolucién de la entropia de la distribucion
de probabilidad en cada instante de tiempo.

Hay que resaltar que en los casos en los que las muestras terminan concentrandose
alrededor de una posicion la entropia se reduce de forma acorde con esta concentra-
cion de la distribucion. En el caso del experimento con 125 muestras, podemos ver
gue la entropia siempre es constante, ya que no se produce esta concentracion de la
distribucion.

Experimento 2

Enla segunda prueba se introduce una modificacion en eHddwtstrap para intentar
resolver el problema del numero de muestras escaso. Consiste en modificar la fase de
remuestreo para generar aleatoriamente un porcentaje de las muestras.

En el caso de la figura 5.14, el 20 por ciento de las muestras se genera de nuevo
aleatoriamente en cada iteracion. De esta forma, si la distribucion no esta centrada en
la posicion real del robot, es posible que alguna de las muestras aleatorias caiga cerca
de esta posicién real del robot. Al calcular la verosimilitud, esta muestra vencera al
resto e inclinara la distribucion hacia ella.

Se puede observar que este comportamiento es el que sucede en la serie temporal,
aunque hay que esperar al instante 38 para que ocurra.

Experimento 3

En este experimento (figura 5.15) se inicializa el robot en una esquina de la habitacion,
unazonade bajaambigliedad, ya que las lecturas de los sonares son muy caracteristicas.
Se puede comprobar que lalocalizacién es muy rapida, centrandose toda la distribucion
de muestras en tan soélo 4 instantes de tiempo.

Experimento 4

En esta prueba (figura 5.16) sucede lo contrario que en el experimento 1. Inicialmente
el robot se encuentra en una zona muy caracteristica, con lo que la localizacion es muy
rapida, para pasar posteriormente a vagabundear por el pasillo.

A partir de la entrada en el pasillo (instante 87) la distribucién comienza a dispersarse
debido a la ambigliedad de las lecturas en el pasillo.

Enla parte inferior de la figura se muestra la evolucion de la entropia de la distribucion,
comprobandose de nuevo cémo la entropia puede proporcionar un buen estimador de
la calidad de la localizacién.
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e Experimento 5

Un ultimo experimento con datos simulados pretende evidenciar uno de los problemas
mas graves del filtrbootstrap Se trata del problema del colapso, que sucede cuando
las muestras estan realizando un seguimiento de una distribucién multimodal.

En la figura 5.17 las muestras realizan la localizacion de un robot moviéndose en zig-
zag en una habitacién rectangular. La simetria del entorno hace que dos posiciones
sean igual de verosimiles, y, de hecho, la distribucién se centra pronto en esas dos
posibilidades. Sin embargo, después de una evolucion de unos 100 instantes de tiempo
en donde se mantiene la multimodalidad, se produce una disparidad en el nimero de
muestras de uno de los grupos y, al momento, el filtro colapsa en una de las modas.

En la figura 5.18 se comprueba como la introduccion de un porcentaje de muestras
aleatorias empeora el problema del colapso.

e Experimento 6

En este experimento se realiza el proceso de localizacién global sobre un conjunto
de lecturas y posiciones leidas por PIXIE, evolucionando en un entorno idéntico al
planteado en los experimentos 1 al 4. En la figura 5.19 se muestran las posiciones y
las lecturas realizadas, que son mucho mas ruidosas que las obtenidas por el simulador
(figura 5.9). A pesar de ello, se puede comprobar en la figura 5.20 que el algoritmo
de localizacion funciona perfectamente.

Figura 5.9: Lecturas y posiciones tomadas del simulador, con las que se han realizado los
experimentos de localizagidl y 2.
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Figura 5.10:Experimento 1. Localizacion en un pasillo (zona de alta ambiguedad). Mues-
tras con un nivel de gris mas oscura indican mayores probabilidades de que el robot se
encuentre en esa posicion. Desviacion absoluta media de las posicigndsa orientacion

6 del robot. Numero de muestras=1000.
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Figura 5.11:Experimento 1. Localizacién en un pasillo (zona de alta ambiguedad). Des-
viacion absoluta media de las posiciongsy y la orientaciond del robot. Numero de
muestras=343.
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Figura 5.12:Experimento 1. Localizacién en un pasillo (zona de alta ambiguedad). Des-
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Figura 5.13:Experimento 1. Entropia de las distribuciones de muestras en cada instante
de tiempo en algunos de los experimentos de localizacién 5.15, 5.10 y 5.11, en los que se
utilizan 1000, 343 y 125 muestras respectivamente.
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Figura 5.14:Experimento 2. Localizacién en un pasillo (zona de alta ambigiiedad). Des-
viacion absoluta media de las posicionesy y la orientaciénd del robot. NUmero de
muestras=125. Muestras escogidas aleatoriamente = 20 por ciento



5.5. APLICACION A LA LOCALIZACION 119

k. : ‘ 3 ‘
t=1 t=2
A L
« k|
t=3 t=4
——— o
‘ v
t=23 t=31

Figura 5.15:Experimento 3. Localizacion en una zona de alta distinguibilidad. Desviacion
absoluta media de las posiciones y la orientaciom del robot. Nimero de muestras=1000.
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A K
|
|

t=38 t=31
4 ’!h' e
t=286 t=138

Figura 5.16:Experimento 4. Ejemplo de serie temporal que termina en una mala localiza-
cion. Numero de muestras=125. Abajo: representacién de la entropia de la distribucién de
muestras en cada instante de tiempo (suavizada con una ventana de 3 instantes de tiempo) .
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Figura 5.17:Experimento 5. Problemas en situaciones simétricas, en donde se produce
multimodalidad. Colapso del filtro de bootstrap.
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Figura 5.18:Experimento 5. La seleccion de muestras aleatorias no soluciona el problema
del colapso.

Figura 5.19:Experimento 6. Lecturas y posiciones reales, con las que se ha realizado el
experimento de localizacion 6.
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Figura 5.20:Experimento 6. Localizacion global con datos reales de PIXIE. NUmero de
muestras = 1000.
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5.6 Discusion

En este capitulo se ha presentado el fihootstrap adaptandolo al problema de la localiza-

cion global de robots maviles. Este filtro se basa en representar la funcién de probabilidad
a posteriori mediante un conjunto de muestras extraidas de la distribucion y en realizar un
proceso de seleccion y actualizacién de las muestras acorde con la estimacion bayesiana.

Hemos presentado multiples ejemplos de los resultados de aplicar este algoritmo al
problema de la localizacion, en sus distintos aspectos de localizacion de caracteristicas
topoldgicas en el entorno, localizacion global del robot y seguimiento de la posicion.

Se ha demostrado que el algoritmo es efectivo y robusto, salvo en el caso de que la
localizacién tenga una ambigiiedad duradera, como sucede en entornos simétricos o en
problemas de localizacion global en el que el robot no encuentra pronto zonas distinguibles.
En estos casos se produce el problema mas importante del filtro, el problema del colapso de
la distribucion.

Se ha probado una estrategia de generacién aleatoria de muestras, demostrandose que
alivia el problema del colapso en el caso de la localizacién global, pero no en el de los
entornos simétricos.



Capitulo 6

Mapeado basado en el algoritmo EM
adaptativo

Para localizar un robot es necesario un mapa del entorno en el que se mueve. Un problema
interesante es la construccién automatica de dicho mapa.

Esta construccién automatica proporciona una mayor fiabilidad al proceso de localiza-
cién, ya que los modelos bayesianos que se utilizan en este ultimo problema son los mismos
gue los que se utilizan en el problema del mapeado. Un modelo de entorno construido con el
mismo modelo con el que después se va a localizar el robot sera mas robusto que un modelo
construido a mano.

En capitulos anteriores se han definido los mapas paramétricos. Veremos en este capitulo
gue es posible determinar los parametros que mejor adaptan un determinado modelo a las
lecturas realizadas por el robot en el entoam sin conocer las posiciones absolutas desde
las que se han realizado estas lecturas

6.1 Introduccién

El algoritmo EM, introducido por Dempstet al. (Dempster, Laird, y Rubin 1977), pro-
porciona una técnica iterativa para realizar una estimacién de maxima verosimilitud de un
conjunto de parametros en problemas en los que existErs ocultogjue dependen esta-
disticamente de los pardmetros a estimar y de los datos observados.

La estimacién de mapas del entorno es un ejemplo del tipo de problemas en los que
se puede aplicar este algoritmo. Tal y como se detalla en el capitulo 2, el problema se
puede formalizar de la siguiente manera. Un robot movil ejecuta una secuencia acciones
de movimiento(ay, ..., ay_1) por un entorno dado, tomando una serie de observaciones
del mismo (lecturas de alcance, por ejempln) ..., zy). Estas acciones y mediciones

125
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constituyen los datos observados. Las posiciones del (ehot ., Xy) desde las que se han
realizado las mediciones no son conocidas, y constituyeatealins ocultoslel problema. Se
trata de estimar los parametips= {d4, ..., d,} que definen el mapa del entorno de maxima
verosimilitud, dadas las acciones y observaciones y considerando los datos ocultos. Para
resolver el problema se cuenta con un modelo que calcula la verosimilitud de unas lecturas
dadas una posicion y unos parametros del modelo del entorno. También se dispone de un
modelo de movimiento que predice la siguiente posicion del robot, dada la posicién actual
y la accién ejecutada.

En el apéndice B se detalla el algoritmo EM. Un resumen de su funcionamiento, aplicado
al problema del mapeado, es el siguiente. Séan (x4, ..., X7) la secuencia de posiciones
del robot (datos ocultosy, = (zi, ..., zr) la secuencia de observaciones del entorno y
A = (ay,...,ar_;) la secuencia de acciones realizadas por el robot. Los conjdnfas
constituyen los datos observados, y se denot& @bconjunto total de datds = XUZUA.
Los parametros a estimar son unos parametrgse determinan el mapa del entorno.

El algoritmo EM busca el mapa del entorg@ue maximiza el logaritmo de la funcion
de verosimilitud marginal de las lecturas y acciones observadas sobre todas las posibles
posiciones del entorno

Inp(Z, A|¢) =/ Inp(Z, A, X |¢).
X

Tal y como se describe en el apéndice B, se comienza por un mapa ifficjase
van obteniendo nuevas soluciones de forma iterativa. En cada iteracion se parte del mapa
obtenido en la iteracion anteria$®, para obtener el siguiente valor de los parametros del
mapa que maximizan kerosimilitud esperadde los datos observados y los datos ocultos,
dado la estimacion anterior del mapa y los datos observados. Formalmente, se buscan los
parametros del mapa que cumplen

arg rr;axE[In p(Z, A, X|9)|Z, A, "] =
=arg rr;ax/ In[p(X, Z, A|$)Ip(X | Z, A, ¢°).
X

La dltima ecuacidn no se utiliza realmente en el algoritmo, se introduce para clarificar
el término condicional de la primera expresion.

La iteracion del algoritmo EM consiste en un paso de estimacion (paso E), en el que
se obtienen los valores esperados de las posiciones del entorno, seguido de un paso de
maximizacion (paso M). En cada iteracidn la verosimilitud aumenta de forma monoétona. En
la tabla 6.1 se formula el algoritmo EM (ver apéndice B para mayor detalle).
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Algoritmo EM

1. Seap? la solucién inicial

2. Repetir hasta la convergencia

(a) Paso E:

Calcular el valor esperado de la verosimilitud de los datos comple-
tos, condicionados por los datos observados y por la solucion actual

¢k
0(pl¢") =ElNp(Z, A, X|¢)|Z, A, ¢"].
(b) Paso M:

¢"*! < arg MaxQ (@ | o).

Tabla 6.1: Formulacién del algoritmastimacion-maximizacién

6.2 Enfoque muestral del algoritmo EM

En un gran nimero de problemas no es posible calcular analiticamente los pasos de estima-
cion y maximizacion, por lo que hay que utilizar otro tipo de enfoques.

Se han propuesto algunos enfoques que implementan el paso de estimacion utilizando
técnicas de muestreo (ver (Cappe, Doucet, Lavielle, y Moulines 1999) paraun resumende las
distintas propuestas genéricas). En resumen, todos estos trabajos utilizan el valor estimado
de los parametros en el instante ante¢iby los datos observadas, . .., z; para obtener
un conjunto deV muestras de los datos ocultos. Los valores ocultos esperados y la funcion
Q se pueden estimar entonces a partir deManuestras.

En el marco de la estimacion bayesiana temporal, algunos trabajos muy recientes utilizan
los algoritmos de estimacién muestral como estimadores del paso de estimacién. Por ejem-
plo, Northy Blake (North y Blake 1998) utilizan el algoritmo EM para estimar los parametros
gue determinan el modelo de movimiento de objetos en secuencias de aprendizaje.

En nuestro caso, dado que la localizacidon es frecuentemente multimodal, utilizar como
estimador la posicion esperada, calculando la media de las muestras, introduciria errores
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muy importantes. Proponemos, en su lugar, utilizar un estimador de posicion robusto como
es la posicion de maxima probabilidad.

En cuanto al paso de maximizacién, no conocemos propuestas genéricas en la litera-
tura relacionada con el algoritmo EM que permitan realizar la maximizacion cuando no se
dispone de una férmula analitica. En el campo de la vision artificial, sin embargo, algunos
trabajos proponen utilizar técnicas adaptativas para encontrar parametros de maxima vero-
similitud, dados unos datos (ver (Hornegger y Niemann 1997) para una introduccidn a estos
métodos). Es posible aplicar estas técnicas al algoritmo EM, si se considera que en la fase
de maximizacién se han obtenido los valores ocultos esperados.

Para aplicar el algoritmo EM al problema de estimacién del mapa del entorno es necesario
introducir estas adaptaciones. Un resumen de la propuesta que se plantea en este capitulo se
muestra en la tabla 6.2.

Algoritmo EM muestral

A partir de un valor anterior de los parametros a estigfarde los dato
observado¥ = {zi, ..., zr} Yy de las acciones del robdt = {a;, ..., ar_1}
se obtienen las posiciones de maxima verosimilitud del rﬁ’bet{ﬁl, oo Xrd
y se refina la estimacion de los parametros, obteniéngose

192}

1. Fase de estimacion

Utilizar el filtro bootstrap suavizado con el algoritmo de Kitagawa
para obtener las posiciones de maxima verosimilitud del rébot
{X1,...,Xr}, dada la funcién de verosimilitud de las observaciones
p(zi | i, 9°) y el modelo de movimient@(X; | Xi_1, &i_1).

2. Fase de maximizacion

Estimar con una busqueda aleatoria adaptativa los parametros del mapa
del entorno que maximizan la verosimilitud de las lecturas y las posicio-
nes esperadas

¢ < arg rr(;)a>dn p(Z, A, X|¢)

Tabla 6.2: Version muestral del algoritmo EM para estimacién de mapas del entorno.
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6.2.1 Estimacion de posiciones esperadas

El filtro bootstraprealiza la estimacién muestral de la densidad a posterigri| Z*, A1),
representando la funcién por un conjunto de muesgtras =/), i = 1... N} . Estafuncién

de densidad representa toda la informacién conocida acerca de las posiciones del robot,
X, dada la historia de sus observacio®s = {zi,...,z} y de sus accioned” ! =
{a1,...,a_1}. A partir de cada conjunto de muestras es posible estimar la esperanza de
la distribucién a posteriori para ese instante de tiempo utilizando las muestras y sus pesos
asociados

N
e o
EX|Z', A" ~% =) =/m (6.1)
i=1
Estos valores esperados, sin embargo, no son representativos en el caso de una distribu-
cion multimodal. Por ello proponemos utilizar en su lugar la muestra de mayor verosimilitud
de cada instantanea

f,=m |zl >x/Vj=1...N (6.2)

como el conjunto de soluciones de la fase de estimacion del algoritmo EM.

Es posible, sin embargo, ajustar aun mas estas estimaciones. Las estimgcienes
cogen unicamente la informacion de las observaciones del robot hasta el instBatas
estimaciones suelen tener un alta variabilidad, ya que durante el seguimiento en linea es
normal que se generen varias hipétesis de localizacién para un mismo instante de tiempo
(recordemos otra vez que se estamos tratando con distribuciones multimodales). Pero tam-
bién sucede con frecuencia que todas las hip6tesis menos una desaparecen cuando se hace
evidente que corresponden a distracciones o errores de estimacion. Por ello, cuando se dis-
pone de la secuencia completa de observaciones (hasta el ifstagggosible utilizar toda
esta informacion para mejorar estos estimadores, ya que se puede eliminar variabilidad pro-
ducidas por distractores temporales. Se trata entonces de estimar la densidad de probabilidad
px|Z", AT,

Isard (Isard y Blake 1998b), recogiendo la formulacién inicial de Kitagawa (Kitawa
1996), formula un algoritmo para muestrear estas distribuciones. A continuacion presenta-
mos una adaptacion de este algoritmo que considera la secuencia de a@gianesar_1)
realizadas por el robot.

El algoritmo consiste en un barrido hacia adelante (equivalente al calculo de los valores
« en el algoritmo Baum-Welch), en el que se generan las mugstrése/)} parar =
1,..., T, utilizando el filtrobootstrap Una vez generadas las muestras se reajustan los
pesost/, para que representen la evidencia proporcionada por las observaciones posteriores
(z,...,2r,8,...,ar_1).
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Para hacer mas compacta la notacion, introducimos la siguiente modificacion. Sean
Zf =(Zj,....Z%) Y A’; = (a;, ..., &) las secuencias de observaciones y acciones desde
el instante; hasta el instanté (con j > k). Con esta notacién podemos expresar la
probabilidad de una posicién dado todo el conjunto de observaciones y acciones como

px1Z{, Al Ha
a p(X, Z,T, AtTil | Ztl_l’ Atl_l) =
P2 AT X0 | 237 AT (6.3)
Esta reordenacién permite que las posiciones muestreggesmanezcan fijas después
del paso de suavizado. Recordemos que el confumtpes, aproximadamente, una muestra

correcta de la distribuciép(xf|Zi‘l, A’l‘l), por lo que, al reemplazar los pesos originales
de las muestrasg; por los pesos suavizados

vl =pzl, AT x, =m)) (6.4)

El conjunto {(m}, ¥/)}, una vez normalizado, aproximara la distribucién requerida
T-1
pX | Z1, AT 7).
Un algoritmo recursivo para calcular las funciones de dengidafl, AT~ | x,) se puede
formular matematicamente como sigue

p(Zl AT X)) = p@ I X)p(Z]1, AT H %) (6.5)

Pzl AT %) = / Pzl ALTD P X1 1 %, &) (6.6)
Xe4+1

Una implementacién concreta requiere la derivacién de una aproximgcida funcion
p(Zf+1, AT=1|x, = mi). La integral se puede aproximar mediante un sumatorio

N 1 i
_ i i i P(X+l=m |X=m,ai)
Pzl AT ) =m) ~ 8 =) e (6.7)
=1 Vi
donde
¢f+1 = P(Z;T+1, AIT_,__ll [ X121 = mi+1) (6.8)
N

vl o= > wfpaa =X, 1% =m! a) (6.9)

k=1
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representan, respectivamente, los pesos calculados en el paso anterior y una correccion de
las probabilidades que tiene en cuenta los pesos
En latabla 6.3 (pag. 133) se presenta un algoritmo que realiza estos calculos.

6.2.2 Mapas de maxima verosimilitud

Unavez calculados los pardmetros ocultos esperados (posiciones dekrebef), . . . , X7)

a partir de la estimacion del mapa antegéry de los datos observados, el algoritmo EM
realiza un paso de maximizacion. En este paso se debe obtener la nueva estimacioén de los
parametros del mapa‘*!, buscando los parametros de maxima verosimilitud. Estos son

los que maximizan el logaritmo de la verosimilitud de las posiciones esperadas, las lecturas
del entorno y las acciones,

Pt < arg rr;axln p(Z, A, X|¢). (6.10)
Enla seccién 2.6 se formulaba la funcion de verosimiljggd, A, X4, ..., X7 | ¢) como

P(Z|X1, ..., X, @) p(Xe, ..., Xp | Z, A),

y, tras desarrollar esta expresion, se llegaba a la ecuacion

T T
P(Z, A X, x| 6) = po) [ [ p@ 1% &) [ [ PO 1Xi-1, ). (6.11)
=1 =2

Sustituyendo esta ecuacion en la ecuacién 6.10 se llega a la formulacion final del mapa
de méxima verosimilitud

T T
¢t « arg n;ax{ln o) [[p@ 1% o) [T O 1%, m)} =

=1 =2

T T
= arg rr;ax{ln PO+ ) N p@ (% ¢) + D Inpx | %1, a@} :

=1 =2

Lostérminogp(X1) Y p(X | X,_1, &_1) son constantes e independientes de los parametros
¢, por lo que la expresioén final queda como

T
¢ < arg rr;axz N p(z, | X = %, §). (6.12)

t=1
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El paso de maximizacion del algoritmo EM depende, entonces, Unicamente del modelo
de observacién definido (ver seccion 4.2). Debido a que la dengidai;, ¢) no tiene una
férmula cerrada no es posible derivar este maximo de forma analitica. Por ello, utilizamos
un sencillo algoritmo de muestreo aleatorio adaptativo, generando un nimero grande de
muestras de parametros y realizando una maximizacion local para cada muestra.

Esta técnica de muestreo aleatorio ha sido utilizada con éxito en gran nimero de proble-
mas de optimizacion de vision artificial (Hornegger y Niemann 1997).
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Algoritmo de Kitagawa

Dado un conjunto de muestras de posiciones estimadas de{@otiot/)} paral
cada instante de tiempo= 1, ..., T, sustituye los pesas; de las muestrg
por los pesog/! que representan la probabilidad de la muestraasociada
dadatodala secuencia de observacionss, = mi | ZI', AT™1).

[7)]

1. Inicializar los pesosy’.:
Vi =nt parai=1,...,N
2. Iterar hacia atras paratodala secuenciaT — 1,...,1
(a) Calcular el modelo de movimiento:
@) = pyr=mi Ix, =m/ &) parai,j=1,...,N.

(b) Calcular los factores de correccién
y! =) mla;) parai=1..... N.
j=1
(c) Aproximar las variables

N ij
J E J t .
8t: wH—l_j paraz:l,...,N.
i=1 Vi
(d) Evaluar los pesos suavizados

Yy =78,

normalizar para qué_ v/ = 1y almacenarlos con la muestra
correspondiente

{(mi, v, i=1,...,N}.

Tabla 6.3: Algoritmo de suavizado de las probabilidades asociadas a las muestras del filtro
bootstrap
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6.3 Experimentos

Se presenta en esta seccion un conjunto de experimentos sobre el algoritmo de Kitagawa
para el suavizado de la distribucién de muestras y un experimento en el que se muestra el
funcionamiento del enfoque EM para el mapeado.

e Experimento 1.

En este experimento (figuras 6.1, 6.2, 6.3, 6.4) se aplica el algoritmo de Kitagawa a
la serie temporal de muestras producidas en el experimento 1 de localizacion. Re-
cordemos que en ese experimento el robot circula por un pasillo hasta que llega a
una zona con un espacio abierto a su izquierda. En este momento la distribucion de
muestras localiza correctamente al robot y durante el resto de instantaneas de la serie
la localizacion se realiza correctamente.

En la figura 6.1 aparecen las muestras de localizacion en las instantaneas 1, 30, 67 y
107, junto con una grafica de la evolucién en el tiempo de la entropia de la distribucion.
En esta gréfica se puede comprobar que, después de una primera fase en la que la
distribucion tiene un alto grado de dispersion, debido a la ambigiiedad de las lecturas
del pasillo, en una segunda fase la distribucién termina centrdndose. Esto sucede
alrededor del instante 30, y continua asi hasta el final de la serie.

Es de esperar que el algoritmo de Kitagawa propague hacia atras lainformacion precisa
en la localizacion de la segunda fase, centrando también la primera fase.

En la figura 6.2 vemos el resultado de aplicar el algoritmo de Kitagawa. Se muestran
dos instantaneas de la serie temporal (la 16 y la 19) antes y después de aplicar Ki-
tagawa. En la parte superior de la figura se comprueba que la distribucién esta muy
dispersa a lo largo del pasillo, indicando que todas esas posiciones tienen igual vero-
similitud. Sin embargo, después de aplicar Kitagawa (abajo) vemos cémo obtienen la
mayor verosimilitud las muestras cercanas a la posicion real del robot, disminuyendo
drasticamente la verosimilitud del resto de muestras.

En la figura 6.3, para resaltar este efecto, se representan las 30 mejores muestras de
ambas instantaneas antes (arriba) y después (abajo) de aplicar Kitagawa.

Por dltimo, la grafica de la figura 6.4 muestra el error absoluto medio en la posicion
x Y la entropia de la serie temporal, también antes y después de aplicar Kitagawa. Se
comprueba que el suavizado reduce drasticamente el error absoluto medio y también
reduce la entropia de la distribucién.

e Experimento 2.

En un segundo experimento (figura 6.5) se aplica el suavizado a la serie temporal
resultante del experimento 5 de localizacién (pag. 121). Recordemos que esta serie
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temporal resultaba de la localizaciéon del robot moviéndose en una habitacion cerrada.
Lasimetria del entorno resultaba en una distribucion multimodal, que persistia bastante
tiempo hasta que se hacia evidente el problema del colapso del filtro.

La aplicacion del suavizado de Kitagawa a esta serie, como podemos ver en la figura
6.5, no elimina la multimodalidad de la distribucion. Este comportamiento es correcto,
ya que esta multimodalidad es producto de una ambigliedad de localizacion, y no de
ruido que desaparece al poco tiempo.

e Experimento 3.

El dltimo experimento muestra un ejemplo de aplicaciéon del algoritmo EM para reali-
zar un mapeado. Los datos han sido tomados del simulador con el robot evolucionando
en una habitacion en forma de L invertida. En la figura 6.7 se muestra la evolucion
del robot, junto con las lecturas de los sonares.

El modelo de habitacion a estimar se puede observar en la figura 6.6. Se define
mediante tres parametrag, d, ¥ ds, que miden, respectivamente, la anchura del
pasillo vertical, la profundidad del pasillo horizontal y la anchura del pasillo horizontal.

El objetivo del experimento es comprobar si es posible estimar correctamente los
parametrogly, d» y dsz que determinan la forma de la habitacién a partir de los datos
obtenidos, utilizando el algoritmo EM.

En la figura 6.8 se muestra la evolucion del algoritmo EM. Recordemos que en cada
iteracion del algoritmo consiste en dos fases:

1. Aplicacion del filtrobootstrappara estimar la localizacion del robot en toda la
secuencia a partir de los datos y del mejor mapa obtenido en la iteracion anterior,
seguida de un suavizado de la distribucion mediante el algoritmo de Kitagawa.

2. Busqueda de los pardmetros de maxima verosimilitud para la mejor posicion
obtenida para cada instantanea de la secuencia temporal, después de aplicada la
fase anterior.

En esta figura se muestra, en la columna de la izquierda, las mejores posiciones
resultantes de la aplicacion del filtbmotstrap seguido del algoritmo de suavizado,

al mapa resultante de la iteracion anterior. La columna de la derecha muestra el mapa
de maxima verosimilitud obtenido con el algoritmo de busqueda adaptativa planteado

en este capitulo.

Los valores iniciales de los parametros $an= 500 d, = 0, d3 = 500. Se puede
comprobar cdmo el algoritmo converge rapidamente al mapa coftkcto250, d, =
400, d3 = 400).
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Iteracién\ Parametros \ Verosimilitud \

1
2
3

(200,450,400)
(250,400,400)
(250,400,400

-71.743
-20.193
-9.408

Tabla 6.4: Evolucion del algoritmo EM. Parametros del mejor mapa obtenido en cada ite-
racion y suma de los logaritmos de las verosimilitudes de las posiciones para ese mapa.

Parametros del mapa correcth: = 250,d, = 400,ds = 400.

En la tabla 6.4 se muestra el resultado del valor a maximizar (suma de los logaritmos
de las verosimilitudes de las posiciones, dado el mapa) en cada iteracion, junto con

los parametros que proporcionan dicho resultado.




6.3. EXPERIMENTOS 137

'y p *"
t=1 t=30

o "

| |4
t=67 t=107

0 20 40 60 80 100 120

Figura 6.1: Experimento 1. Ejemplo de una serie temporal a la que se le aplicara el
algoritmo de suavizado. NUmero de muestras=125. Abajo: representacion de la entropia
de la distribuciéon de muestras en cada instante de tiempo (suavizada con una ventana de 3
instantes de tiempo) .
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Figura 6.2:Experimento 1. Dos instantaneas de la serie temporal antes (arriba) y después
(abajo) de aplicar el algoritmo de Kitagawa.

Figura 6.3:Experimento 1. Seleccién de las 30 mejores muestras de cada instantanea de
la figura anterior.
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Figura 6.4:Experimento 1. Arriba: Error absoluto medio en la posiciagrdel robot de la
serie de la figura 6.1 antes (errorl) y después (error2) de aplicar el algoritmo de Kitagawa.
Abajo: entropia de la misma serie temporal antes (entropial) y después (entropia2) de aplicar

el algoritmo de Kitagawa. Numero de muestras=125.
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Figura 6.5: Experimento 2. Instantdnea 29 de la serie temporal mostrada en la figura
5.17 antes (arriba) y después (abajo) de aplicar el algoritmo de Kitagawa. A la derecha de
cada una las 30 muestras con mayor verosimilitud. El algoritmo de Kitagawa no elimina la
multimodalidad de una distribucién ambigua.
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(0,1000) (d1+d2,1000)

d3

(d1,1000-d2)

(d1+d2,1000-d2)

Amrrad

d2

(0.0) (d1,0)

>

d1

Figura 6.6: Experimento 3. Modelo de habitacién del experimento 3, definida mediante
los parametrody, d, y ds.

400

Figura 6.7:Experimento 3. Mapa de la habitacién y lecturas y movimientos del robot.
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ESTIMACION MAPEADO
A
400
iTERACION 1 v
A
400
ITERACION 2 v
250 400
A
400
Y
ITERACION 3
< 250 < 400 >

Figura 6.8:Experimento 3. Evolucion del algoritmo EM para estimar los mejores parame-
trosds, d; Y ds que definen el mapa de la habitacion.
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6.4 Discusion

Se ha presentado en este capitulo un algoritmestienacion-maximizacioteM) que re-

suelve el problema del mapeado. En este problema, el robot evoluciona por el entorno
recogiendo lecturas de los sensores e incrementos de posicidon obtenidos por odometria.
Una vez realizada la exploracion, se busffdine el mapa que mejor explica las mediciones
obtenidas, aun desconociéndose las posiciones absolutas por las que el robot ha pasado.

Para ello, el algoritmo EM itera una primera fase de estimacion y una segunda de ma-
peado.

La fase de estimacidn se basa en la utilizacion del filtrotstrappara obtener la serie
completa de posiciones del robot en todos los instantes de tiempo. A continuacidn se corrigen
las probabilidades de las muestras de esta serie temporal utilizando el algoritmo de Kitagawa,
y se escogen las muestras de mas probabilidad en cada instante de tiempo.

La fase de maximizacion busca los parametros del mapa que maximizan la verosimilitud
de las lecturas en las posiciones obtenidas en la fase anterior.

Se ha comprobado el buen funcionamiento del algoritmo de Kitagawa para realizar la
correccién de las probabilidades de las muestras y el correcto funcionamiento del algoritmo
EM para ajustar correctamente los parametros, obteniendo el mapa del entorno.
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Capitulo 7

Conclusiones

En esta tesis se ha realizado un estudio en profundidad de los problemas de localizacién y

mapeado de robots moéviles en entornos de oficina, basandonos en el enfoque bayesiano.
Este enfoque ha demostrado ser de gran utilidad para formalizar correctamente distintos

aspectos de estos problemas, como son los concepfmssbddn mas probablenapa que

mejor se adapta a unas observaciomasayectoria mas probableTodos estos conceptos

se manejaban habitualmente en la literatura sin tener una contrapartida formal.

El enfoque bayesiano ha demostrado también ser muy fértil en cuanto a las técnicas que
se pueden derivar de él. En concreto, en los Ultimos afios se ha utilizado para resolver el
problema de la localizacion mediante técnicas basadas en el filtro de Kalman, en las redes
bayesianas o en las rejillas de probabiliad. A estas técnicas hay que afadir la que hemos
propuesto en esta tesis: lilgros de particulas

El enfoque de los filtros de particulas, consistente en representar una distribucion de
probabilidad mediante un conjunto de muestras, es totalmente novedoso en el campo de la
robética movil y es previsible la aparicion de mdltiples aplicaciones y algoritmos basados
en el mismo. Un ejemplo es la propuesta de algoritmeddignacion-maximizaciégue se
realiza en la tesis para estimar el mejor mapa del entorno.

Esta tesis presenta, en concreto, las siguientes aportaciones, desde el punto de vista de
modelos.

1. Formulacién bayesiana que integra los problemas de localizacion y mapesalo
presenta una formulacion bayesiana de los problemas de localizacién y mapeado que
generalizamuchas propuestasy que presenta un marco desde el que derivar interesantes
modelos, técnicas e implementaciones.

2. Modelo del sensor de ultrasonidase propone un modelo estocastico que define una
funcién de verosimilitud multimodal de las lecturas de sonar. Este modelo es muy
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realista, funciona correctamente y contempla tipos de lecturas de los sonares que hasta
el momento no se habian modeladolles rebotgs

3. Modelo de observaciémpresentamaos un modelo de observacién para la localizacién
del robot que contempla tanto la posibilidad de ruido aleatorio como la de obstacu-
los no modelados. Esta formulaciéon lo hace especialmente robusto y eficiente, en
contraposicion con modelos més sencillos utilizados en la literatura.

4. Mapas paramétricostos modelos de mapas de entorno que proponemos son modelos
métricos parametrizables mediante las posiciones de vertices de poligonos. Este tipo
de parametrizacién permite definir de una forma sencilla y con pocos parametros
modelos con restricciones geométricas elaboradas. Esto hard que los algoritmos de
mapeado sean mas rapidos y exactos.

En cuanto a técnicas y algoritmos, en la tesis hemos planteado de forma novedosa la
aplicacion de una serie de algoritmos a problemas de localizaciéon y mapeado:

1. Filtro bootstrap: se aporta la aplicacion del filtdoootstrapal problema de la de-
teccidn de caracteristicas topoldgicas, de la localizacion global y del seguimiento de
posiciones. El algoritmo ha localizado correctamente las caracteristicas topolégicas
y la posicion del robot, utilizando tanto datos simulados como datos reales.

2. Algoritmo de Kitagawa:proponemos la aplicacién del algoritmo de Kitagawa a la
correccion de la localizacion de una serie temporal completa. El algoritmo funciona
correctamente con datos del simulador y datos reales.

3. Algoritmo EM:presentamos la formulacién de un algoritmo EM basada en particulas
y en técnicas de blsqueda adaptativa, asi como la aplicacion del algoritmo EM al pro-
blema del mapeado. Se ha comprobado la correccién del algoritmo en datos obtenidos
con el simulador.

Como lineas futuras de desarrollo de esta investigacion proponemos las siguientes:

1. Problemas préacticosse deben solucionar problemas practicos, como es el tiempo de
computo de los algoritmos de simulacion ymmtstrap Se debe mejorar su eficiencia
para que sean aplicables en tiempo real.

2. Colapso del filtro bootstrapuno de los problemas fundamentales del fittonts-
trap es su colapso en situaciones de multimodalidad. Es necesario la aportacion de
soluciones teéricas y practicas de este problema.
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3. Distinguibilidad de las posicionegrofundizacién en los problemas tedricos de distin-
guibilidad de las posiciones, dado un modelo de entorno y un modelos de observacion.
Existen posiciones de los entornos que tienen una alta distinguibilidad. Seria intere-
sante utilizar estas posiciones cotandmarksnaturales en los que el robot se va a
relocalizar correctamente. Esta linea lleva a una teoria de la localizacién activa que
pasa por un uso obligado de la teoria de la informacion.

4. Extension a localizacion por visiérla extension de la propuesta a vision pasa por
formular la verosimilitud utilizando como datos percibidos por el robot las imagenes
obtenidas por el robot. Se deberia comparar esta imagen con la que el robot veria en
las posiciones candidatas. Para ello es necesario formular un modelo del entorno que
permita generar vistas desde posiciones arbitrarias.
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Apéndice A

Muestreo por rechazo

Supongamaos una distribucién de densidad de probabilidad

p(x) = cg(x)h(x) (A.1)

dondeg(x) puede ser calculada para cualquier valgres posible generar muestras de la
distribucioni(x).

Para generar una poblacion ¥emuestragma, ..., my) de la funcidnp(x) se puede
utilizar el algoritmo de aceptacién y rechazo (ver tabla A).

Algoritmo MUESTREO POR RECHAZO
Salida: Valores(my, mo, ..., my) muestreados de la densidad de probabili-
dadp(x) = cg(x)h(x)

1.i <1

2. u < valor aleatorio de la distribuciéti (0, 1)
3. y < valor aleatorio de la distribucidi(x)

4. Siu < g(y) hacerm; = y. En otro casoira 2.
5.i «i+1ysaltaa?2hastaque=N

Tabla A.1: Algoritmo de rechazo y su versién modificada para mejorar su eficiencia.

En la primera version del algoritmo se generan muestrdes la distribuciom (x). El
valor devuelto porg(y), para cada muestra dgx) determina la probabilidad de aceptar
dicha muestra. Para hacer efectiva esa probabilidad se utiliza el nargererado por la
distribucion uniforme, de manera que la muestra se acepta cuando este nimero es menor
qgue el valorg(y).
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Algoritmo MUESTREO POR RECHAZO MODIFICADO
Salida: Valores(mi, mo, ..., my) Yy probabilidades asocidés;, no, ..., 7n)
muestreados de la densidad de probabilidaéd = cg(x)h(x)

1.i <1

2. m; < valor aleatorio de la distribucidin(x)
3. 7w < g(m;)

4.i < i+ 1ysaltaa?2hastaque=N

Tabla A.2: Algoritmo de rechazo y su version modificada para mejorar su eficiencia.

Por ejemplo, supongamos que se genera el nimerol1.5y g(1.5) = 0.75. Esto
significa que la probabilidad de acepta& 1.5 como un valor aleatorio generado paix)
es Q75. Se utiliza el valor aleatori@ para realizar esta aceptacion.

Un problema muy importante del algoritmo de rechazo es que se necesitan demasiadas
muestras cuando la funci@tx) nos da valores de probabilidad muy pequefos. La mejora
planteada por la versién modificada del algoritmo (ver tabla A) consiste en ir almacenando
las probabilidades obtenidas pgofx) junto con las muestras. De esta forma, como sa-
lida del algoritmo se obtieneN muestragms, ..., my) y sus probabilidades asociadas
(e, ..., 7TN).



Apéndice B

Algoritmo EM

El algoritmo EM, inicialmente propuesto por Dempster (Dempster, Laird, y Rubin 1977),
presenta un técnica iterativa general para realizar una estimacion de maxima verosimilitud
de parametros de problemas en los que existen ciddims ocultos Presentamos a conti-
nuacion el algoritmo, y un ejemplo de su aplicacion a la resolucion de un problema concreto,
tomando (Mitchel 1997) como referencia.

B.1 Descripcion del algoritmo EM

El algoritmo EM puede aplicarse en muchas situaciones en las que se desea estimar un
conjunto de parametragsque describen una distribucién de probabilidad subyacente, dada
Unicamente una parte observada de los datos completos producidos por la distribucion.
En general, supongamos que en cada realizacion del experimento aleatorio se observa un
parametrq; y existe un parametro oculig. Denotamos entonces pdr= {z1, ..., z,} al
conjunto de datos observadosrmemealizaciones del experimento, pobr= {xi, ..., x,,} al
conjunto de datos no observados y o= Z U X al conjunto completo de datos. Los datos
X pueden considerarse una variable aleatoria cuya distribucién de probabilidad depende de
los parametros a estiméary de los datos observadds De la misma formay es una
variable aleatoria ya que esta definida en términos de la variable ale&totitlamemos
h a la hipétesis actual de los valores de los parameétrgsdenotemos pok’ la hipétesis
revisada que se estima en cada iteracion del algoritmo EM.

El algoritmo EM busca la hipotesis que maximiza la esperan#dln p(Y | k')], siendo
p(Y |9) ladistribucién de probabilidad que defiFigy que depende de los pardmetros desco-
nocidosy. Esta distribucion de probabilidad define la verosimilitud de los datos completos
Y dada una hipotesig de los parametros ocultos. Al maximizar el logaritmo de la distri-
bucién se estd maximizando la verosimilitud. Se introduce el valor esp&ifauip (Y | 7')]
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debido a que el conjunto completo de daXoss una variable aleatoria. Dado que el con-
junto completo de datog contiene datoX no observados, se deben considerar todos los
posibles valores d&, ponderandolos segun su probabilidad. En otras palabras, se calcula el
valor esperad@&|In p(Y | #')] sobre la distribucion de probabilidad que gobierna la variable
aleatoriaY. Esta distribucion esta determinada por los valores obsendduoés por la
distribucion de los valores no observados

En general, se desconoce la distribucioi deorque esta determinada por los parametros
0 que se intenta estimar. Por ello, el algoritmo EM usa la hipétesis dcpeala estimar la
distribucion de¥Y. Se define entonces una funcirii | ") que proporcion&[In p(Y | h')]
como una funcién d&’, bajo la suposicién de q@e= & y dada el conjunto de observaciones
Z del conjunto completo de datds

Q' |h) = Ellnp(Y | ) | h, Z].

EnlafuncionQ (k' | h) se supone que la hipétesiy los datos observadastienen unos
valores fijos y que éstos definen la distribucion de probabilidad de las variables at@ftas
por tanto, sus valores esperados). La distribucion de probabilid&ddééinida porZ y h
es, entonces, la que se utiliza para calcélgn p(Y | #')] para una hipétesis cualquigta
En su forma general, el algoritmo EM repite la siguiente pareja de pasos hasta que converge.

Paso 1: Paso de estimacion (EXalcular Q (4’ | h) utilizando la hipétesis actudd y los
datos observadas para estimar la distribucion de probabilidadide

QW |h) < E[In p(Y | W) | h, Z]. (B.1)

Paso 2: Paso de maximizacién (M$Bustituirk por la hipétesig’ que maximiza la funcion
0

h < arg n;ng(h’ | h). (B.2)

B.2 Aplicacion a la estimacion dek medias

Parailustrar el funcionamiento del algoritmo EM, vamos a utilizarlo para derivar un algoritmo
gue estime las medias de una mezcla dkstribuciones normale® = (w1, ..., uy) €on

igual desviacion tipica, que se supone conocida. Los datos observddes(z;} son los
datos producidos por la distribucién. Los datos no observados

k
X={(x1j5"'7xkj)}’ Xij :(O, 1), le'j =1
i=1
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indican cual de las distribuciones normales se ha utilizado para obtener elzgato
Para aplicar EM primero se necesita derivar una expresi@ndéhn’) para el problema.
Derivemos primero la formulacion de (Y | 2"). Para un Gnico conjunto de datps =

(zj, X1, - .., xz;), laverosimilitud de que estos datos hayan sido obtenidos con una hipétesis
h' = (uy, ..., u) se puede escribir como
1 1 &
N — A N2
p(yjIh) = p(zj, x1j, ..., x5 [ ) = Wexp(—ﬁ ;xﬁ(Z/ - u)9).  (B.3)

Esta expresion proporciona la probabilidad de que el vgldraya sido generado por
la distribucién normal seleccionada por los datos ocultos. La probabilidad para todos las
instanciasn de los datos es

Inpy k) = In]]pQy;In)=
i=j
= Y Inp(y;|h) =
j=1
= i(ln — —iix“(z—u’-)z) (B.4)
j=1 2r02  20° i=1 " l

Por ultimo, se debe calcular el valor esperado de esta expregidri Irk’) sobre toda la
distribucion de probabilidad que gobieriiao, de forma equivalente, sobre la distribucién
de los datos ocultos dg, x;;. Al ser la expresion anterior una expresion linear en funcion
de estos datos, es posible derivar la siguiente expresion

k
1 1 N2

— 255 Y Xz — )]
V2ro?2 20—

EInp(Y |K)] = E[Y (I
j=1

m k
1 1
= Y (In—= - -5 Elx;lz; — u)d (B.5)
Para resumir, la funcié@ (k| 1) del problema de lak medias es

/ . 1 1 . N2
O(h' | h) —;(ln\/ﬁ—ﬁ;ﬂxﬁ](q—m) ), (B.6)
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dondehr’ = (uj, ..., up) y donde los valores esperados de los datos ociélfes] se
calculan a partir de la hipotesis adtyaa los datos observadds. Este valorE[x;;] es
simplemente la probabilidad de que la muestrénaya sido generada por la distribucion
normali

E[-xij] — kP(X:Zj|/-'L=/vLi) —
Yoo P =z = pn)
exp(— 55 (2; — 1i)?
= — 2 - (B.7)
Zn=1 exp(_ﬁ(zj - Mn) )

Esta ecuacion completa el primer paso del algoritmo EM, en el que se define la funcion
0 a partir de los datos ocultos esperados. El segundo paso (maximizaciéon) consiste en
encontrar los valorequy, . .., u;) que maximizan la funcié asi definida. En este caso,

arg n;,aXQ(h’ |h) =

k

i 1 1 L
= arg rg,ax;(ln N ; Elx;1(z; — 1)?) =

k m
— i . )2
= arg rpln;;E[xu](z, ) (B.8)

Esto es, la hip6tesis de maxima verosimilitud es la que minimiza la suma ponderada de
los errores al cuadrado, donde la contribucion de cada instargi@rror que defing! esta
ponderada poE[x;;]. Esta hipotesis se puede calcular de forma analitica con la siguiente

expresiéon

1 m
M HZZE[XU]ZJ'. (89)

j=1



Apéndice C

Generacion de trayectorias robustas
mediante algoritmos genéticos

Este apéndice y el siguiente presentan trabajos previos al desarrollo del cuerpo central de la
tesis, relacionados con técnicas de navegacion local. Estos trabajos dieron lugar a publica-
ciones (Gallardo, Colomina, Flérez, Arques, Company, y Rizo 1997; Gallardo, Colomina,
Flérez, y Rizo 1998) y sirvieron para plantear algunas preguntas de las que ha surgido la
tesis.

C.1 Introduccioén

El problema de la generacion de un camino a seguir por un robot mévil para llegar de una
posicion inicial a otra final evitando los obstéaculos del entorno ha sido tratado ampliamente
en la literatura (Latombe 1991), encontrandose soluciones eficientes tanto mediante técnicas
algoritmicas como mediante técnicas evolutivas (Xiao, Michalewicz, Zhang, y Trojanowski
1997; Doyle 1995; Rendas y W.Tetenoire 1997; Ahuactzin, Talbi, Bessiere, y Mazer 1992).
La mayor parte de estos enfoques resuelven el problema en el espacio de configuraciones
del robot (definido normalmente por su posicibry y su orientaciér). En ese caso la
solucién es una secuencia continua de configuraciones espaciales, esto es, una trayectoria
en el plano que no colisiona con los obstaculos y que conecta el punto inicial con el punto
final. Sin embargo, una trayectoria espacial no resuelve directamente el problema de mover
el robot, ya que le falta una ley temporal asociada a la misma (distintas velocidades lineales
y angulares pueden generar la misma trayectoria espacial).

Para resolver completamente el problema hay que planificar una secuencia de velocida-
des, realizando entonces la busqueda no en el espacio de configuraciones sino en el espacio
de velocidades (en el caso de robggschro-drivecomo el que se utiliza en este trabajo,
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estas velocidades son la velocidad lineglla velocidad angulap). En este nuevo espacio,

los obstaculos ya no son definibles geométricamente, por lo que se limita mucho el tipo de
técnicas algoritmicas que pueden aplicarse. Adicionalmente, en muchos casos es necesario
imponer restricciones que reducen localmente la dimensionalidad del espacio de velocidades
del robot. Por ejemplo, un robot que se mueve con las caracteristicas de un automévil, como
es el presente caso, no puede moverse lateralmente y tiene limitado el angulo de giro. A
este problema se le denomina planificacion de trayectorias con restricciones cinematicas no
holonémicas y su solucién es materia de investigacion actual en el campo de la robética y el
control (Latombe 1991; Divelbiss y Wen 1994; Chatila, Khatib, Jaouni, y Laumond 1997).
Todas estas soluciones plantean dos importantes problemas:

1. Soluciones subéptimas: la mayor parte de las técnicas algoritmicas que resuelven el
problema de la busqueda de trayectorias no holonémicas encuengrayectoria,
pero no contemplan factores practicos de eficiencia como el tiempo de la misma, su
regularidad, etc.

2. Robustez de latrayectoria: unavez calculada unatrayectoria, ésta debera ser ejecutada
por un robot real, lo que nos lleva directamente al problema de la incertidumbre en su
ejecucion. Estaincertidumbre se debe alainexactitud en la ejecucion de las 6rdenes de
velocidal y a la inxactitud en la localizacion del robot por la incertidumbre asociada
a la odometria. Esta incertidumbre es acumulativa con lo que cuanto mas larga sea la
trayectoria, mas se sufrira.

Debido a ello, las trayectorias que se obtengan como solucién deben ser robustas, en
el sentido de que la introduccién en ellas de pequefios cambios no debe variar mucho
el resultado final. Esta caracteristica de robustez no es garantizada por ninguna de las
aproximaciones que se utilizan para resolver el problema.

En este trabajo se presenta una solucidn a la planificacion de trayectorias no holoné-
micas mediante computacién evolutiva que contempla los dos problemas arriba planteados.
La busqueda de la mejor trayectoria para unos criterios dados se realizara de forma natural
introduciendo esos criterios en la funcion de bondad, y la robustez de la trayectoria se garan-
tizara introduciendo en esta funcién de bondad un término de ruido gausiano acumulativo y
adaptando el método de busqueda genética para que esto sea contemplado.

C.2 Planteamiento del problema

Esta seccion describe las ecuaciones de movimiento fundamentales de usyraibwo-
drive, definiendo la componente dinamica del control del mismo. Las trayectorias a seguir
por elrobotylas funciones de evaluacion asociadas alos mismos se basan en estas ecuaciones.
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Las variables de estado del robot mévil son su posicigny), su orientaciond) y
sus velocidades angular y lineal ¢ v, respectivamente). Consideraremos constantes las
aceleraciones angularesy linealesy a,). Estas aceleraciones tienden a no ser demasiado
altas enimplementaciones reales de robots moviles, para no someter a la estructura mecanica
del robot a tensiones excesivas y para conseguir movimientos suaves. Debido a ello estas
aceleraciones no deben ser despreciadas si se quieren conseguir resultados aplicables a la
realidad.

El control del robot lo modelamos con las variahtey c,, que toman valores discretos
{—1,0, 1} y definen si, para un instante de tiempo determinado, las velocidades deben ser
decrementadas, no modificadas o incrementadas. Elincremento de estas velocidades vendra
dado por la constante de aceleracion.

In

w(t,) = w(ty) —I—/ AuCe(1)dt (C.1)

fo

In

v(t,) = v(to) +/ aycy(t)dt (C.2)

fo

La dinamica de las variables de posicién y direccién angular del robot se modela con las
siguientes ecuaciones.

0(t,) = 0(to) +/"w(r)dz (C.3)
x(t,) = x(tp) + / ' v(t) cosO (t)dt (C.4)
y(tn) = y(to) +fn v(t) sind(¢)dt (C.5)

Las ecuaciones anteriores pueden simplificarse si se asume que el robot debe controlarse
de forma discreta, con intervalos de control de tiempoSuponemos, pues, constantes las
variables de contral, y ¢, para estos intervalos de tiempo. De esta forma se simplifican las
anteriores ecuaciones.

ti+At

n—1
xX(ty) = x(to)) + Y _ / (v(t;) + Ajv) o0 (t;) + A, O)dt (C.6)
i=0 Vi

donde
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ALy = ayc (D)t — 1) (C.7)
Ao = w(t,-)ca,(ti)(t—ti)+%aw(n)cw(n)(t—ti)z (C.8)

Por ello el problema de encontrar una trayectoria en un espacio de velocidades puede
formularse como la busqueda de una secuencia temporal de valores para las@rdepes

<(cl)70’ cwto)’ (cl)fl ’ Ca),l)7 LR ] (Cv,” ) th”)>

qgue haga moverse el robot desde la configuracion inieiat xo, y = yo,0 = 6o, v =
0, w = 0,1 = to) hastala posicion objetiviac = xopj, y = Yobj, v = 0, @ = 0,1 = 1,). Hay
gue hacer notar que el robot debe terminar en una configuracion estatica y gue no imponemos
ninguna restriccion a la orientacion final.
Ademas, como restricciones adicionales, buscamog,gea el minimo posible y que
la trayectoria resultante sea robusta, en el sentido comentado anteriormente.

C.3 Generacion de trayectorias mediante algoritmos genéticos

En el problema de la generacién de trayectorias Gptimas, la eleccién del uso de algoritmos
genéticos (Back, Fogel, y Michalewicz 1997) se fundamenta en dos razones principales:
en primer lugar, es una técnica adecuada para realizar busquedas en espacios de dimension
elevada, como en este caso. Por otro lado, el método impone pocas restricciones de tipo
matematico en la forma de la funcién a optimizar, de tal manera que es aplicable a la
generacion de trayectorias para cualquier tipo de comportamiento (evitar obstaculos, seguir
paredes, etc.).

C.3.1 Representacion de las soluciones

Cada individuo de la poblacion representara una trayectoria que parte del punto origen e
intenta llegar al destino. Como el objetivo no es Unicamente obtener una secuencia de
coordenadas espaciales que conecte el punto origen con el punto de destino, sino ademas
encontrar cual es la velocidad lineal y angular que el robot debe tomar en cada punto del
camino, un cromosoma estara formado por una serie de velocidades lineales y angulares de
referencia para el robot en instantes de tiempo sucesivos. Asi, una trayectoria en el espacio
de velocidades se codificara como un vector de pares de valoresypara

((vtla wll)a (vtz’ wtz)a ceey (vt,la wt,,))

Esta secuencia de velocidades de referencia se transformara para su evaluacién en una
secuencia de érdenes de cambio de velocidad como los descritos en la seccién C.2.
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C.3.2 Funcién de evaluacion

La funcién de evaluacion mide la optimalidad de cada trayectoria en términos de la distancia
de la posicidn final del robot a la posicion objetivo y el tiempo invertido en llegar hasta ella:

f= adobj(tm o) + Bty

donde:

o dopj(t,0) = \/(X (t,0) — xop))? + (Y (t, 0) — yopp? + v(t,0)2 + ¢(t, 0)? es la dis-
tancia euclidea en el espaciq y, v, w) entre el objetivo y el punto final de la trayec-
toria.

e 1, €s el tiempo invertido en recorrer la misma.

e «, B son coeficientes de ponderacion que miden la importancia relativa de cada uno
de los factores.

Para asegurar que los individuos que chocan siempre tienen una adecuacion peor (mayor)
gue los que llegan al final sin chocar, se le suma al valor de su funcién de adecuacion el valor
de la adecuacién del peor de los individuos que no ha chocado en esa generacion.

Las funcionesi(¢, o) y ¢(z, o) representan las velocidades lineal y angular obtenidas
introduciendo un ruido gausiano de desviacion tipican las ecuaciones (C.1) y (C.2),
guedando las mismas como:

@(ty, 0) = w(tp) +fn(awcw(t) + p(t, 0))dt (C.9)

D(tn, o) = v(t0) + / “(aven(t) + p(t, 0))dt (C.10)

Las funcionesy(¢,0) y ¥ (¢, o) son los valores de e y que se obtienen con estas
velocidades. Eltérmino de ruigdz, o) modela la incertidumbre en las velocidades y en las
posiciones que se produciria al ejecutar la secuencia de 6rdenes codificados en la trayectoria
en un robot real.

Desde el punto de vista de la funcion de evaluacion esta incertidumbre se traduce en
gue un cromosoma no tiene asociado un Unico valor de adecuacién. Por ello, la estrategia
adoptada consiste en evalwareces cada individuo y tomar como su valor de adecuacion el
maximo (el peor) de los valores obtenidos, para asegurar que se promueven las trayectorias
robustas. Paraimpedir que la introduccion de ruido mejore accidentalmente trayectorias que
de otro modo obtendrian peor valoracién, cada individuo se evalla ademas suponiendo la
inexistencia de ruido.
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(@) (b)

Figura C.1: Resultados sin ruido para distintos entornos.

C.3.3 Operadores genéticos

e Cruce: este operador combina las velocidades de referencia de dos trayectorias. Para
ello se calcula de manera aleatoria un punto de cruce independiente para cada uno de
los cromosomas y se intercambia el material genético que queda a la derecha de los
respectivos puntos de cruce. Al ser el punto de cruce distinto para cada uno de los
"padres" este método da lugar a individuos de longitud variable. Esto permite que la
longitud de la trayectoria vaya creciendo en las sucesivas generaciones y el robot se
vaya aproximando al punto de destino.

e Mutacién: cada mutacién consiste en sumar un valor aleatorio procedente de una
distribucion normal de mediO y \arianza 5 metros por segundo (o 5 grados por
segundo en el caso de velocidades angulares) a una de las velocidades de referencia
gue componen el cromosoma.
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(a) (b)
Figura C.2: Resultados para el entopasillo.

C.4 Resultados

C.4.1 Resultados en distintos entornos sin ruido

En la figura C.1 pueden verse dos trayectorias generadas por el algoritmo genético en dis-
tintos entornos, ambas sin aplicar ningln término de ruido a la funcién de evaluacion. Para
obtenerlas se han utilizado los siguientes parametros: nimero de individ&ok00, na-
mero de generacionas= 100, probabilidad de cruge. = 0.75y probabilidad de mutacion
pm = 0.01.

Hay que hacer notar que las trayectorias resultantes alcanzan velocidades considerables
gue pasan demasiado cerca de los obstaculos. Una ejecucion de alguna de ellas en un robot
real terminaria, probablemente, en una situacion de colisién con alguno de ellos.

C.4.2 Comparacion de resultados con y sin ruido

Con el objeto de comprobar los efectos que produce la introduccién de ruido en las ca-
racteristicas de las trayectorias obtenidas mediante el algoritmo evolutivo, se han realizado
distintas pruebas en un mismo entorno (figura C.2), manteniendo constantes los parametros
del algoritmo (los mismos que en el apartado anterior) y variando Unicamente la desviacion
estandap del ruido gausiano generado. El promedio de los resultados obtenidos tras 20



162 APENDICE C. TRAYECTORIAS CON ALGORITMOS GENETICOS

ejecuciones del algoritmo con cada nivel de ruido se muestra en la tabla C.1. El parametro
D,.;, representa la distancia minima del robot a los objetos del entorno a lo largo de toda la
trayectoria, mientras qug, ., es la velocidad lineal media del robot.

Como puede observarse, la presencia de ruido fuerza a que las trayectorias se alejen a
una mayor distancia de los objetos. Las trayectorias sin ruido consiguen una mejor velocidad
promedio al no verse sometidas a restricciones de distancia (figura C.2), aunque este aspecto
se ve ampliamente compensado al utilizar ruido, ya que éstas son mas seguras de cara a su
ejecucioén en un robot real.

Parametro Nivel de ruido(o)
0.0 0.04 |01
Dyyin(cm) 38.2 | 39.8 | 43.8
Vinea(cm/s) | 51.31| 50.92 | 46.4

Tabla C.1: Resultados obtenidos para el entqasillo

C.5 Conclusiones

Se ha presentado una soluciéon al problema de generacién de trayectorias robustas en el
espacio de velocidades de un robot movil mediante algoritmos genéticos. Los resultados
obtenidos son correctos y se mejora la robustez de las trayectorias resultantes con respecto
a las de otros métodos. Para ello se ha utilizado en el algoritmo genético una funcion de
evaluacion que incorpora un término de ruido acumulativo y se ha adaptado este algoritmo
para que sea capaz de encontrar una solucion subdptimay robusta que satisfaga esta funcion
de evaluacion.

Como trabajos futuros nos planteamos modificar la funcién de evaluacion para generar
diferentes trayectorias que correspondan a esquemas de comportamiento local, como es el
seguimiento de paredes, o la navegacion por el centro del pasillo, con objeto de utilizar estas
trayectorias obtenidas como muestras de aprendizaje para la generacion de un controlador
local que responda a estos esquemas. También estamos estudiando otras alternativas de co-
dificacion de las soluciones que permita obtener mejores resultados en entornos con minimos
locales pronunciados.



Apéndice D

Aprendizaje de conductas locales de
navegacion

D.1 Introduccion

Existen dos tipos basicos de enfoques para controlar la navegacion de un robot movil: téc-
nicas globales y locales. En las técnicas globales, como son los métodos geométricos, la
programacioén dinamica o los métodos de campo de potencial (ver en (Latombe 1991) resu-
meny referencias complementarias) se asume totalmente conocida la descripcion geométrica
del entorno en el que se va a mover el robot. Se trata de métodos potentes y eficaces para
generar tanto trayectorias a seguir como secuencias de comandos a ejecutar. Son métodos
usados para el control de robots que trabajan en entornos sin ninguna variabilidad y que rea-
lizan tareas repetitivas en las que se conocen en todo momento el valor de todas sus variables
de estado.

Los métodos locales o reactivos, por el contrario, consideran que el robot va a moverse en
un entorno no conocido a priori y proporcionan unas conductas estandar para reaccionar ante
lecturas de los sensores del robot (evitar obstaculo, seguir pared, entrar en puerta, alinearse
con objeto, etc.). Estas conductase@muemasn la terminologia de Arkin (Arkin 1990))
son aplicables en gran nimero de entornos distintos y se suelen usar junto con un control de
alto nivel que se encarga de secuenciarlas. Este tipo de control es el que vamos a utilizar en
el presente trabajo.

D.1.1 Técnicas previas para el control local

Entre las propuestas de control local, cabe destacar el enfoqikstiglrama de campo
vectorial (Borenstein y Korem 1991), el método de velocidad-curvatura (Simmons 1996), el

163
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| Método de control local | Esquemas |

Histograma de campo de potencialavanzar-evitando-obstéculos
ir-a-objetivo
entrar-por-puerta

Velocidad-Curvatura avanzar-evitando-obstaculos
ir-a-objetivo

Ventana Dinamica avanzar-evitando-obstaculos
ir-a-objetivo

Esquemas motores esquemas configurables

Tabla D.1: Esquemas de actuacion susceptibles de ser implementados con cada uno de los
métodos de control local. Ver en el texto principal las referencias correspondientes a cada
uno de los métodos.

método de ventana dinamica (D.Fox, Burgard, y Thrun 1997) y el método del propio Arkin
de esquemas motores (Arkin 1989).

En latabla D.1 se comparan el tipo de esquemas de conducta susceptibles de ser imple-
mentados usando cada uno de estos enfoques. El enfoque de esquemas motores, pese a ser
el mas genérico, es muy complejo de llevar a la practica por el gran nimero de pardmetros
que deben ser ajustados en las ecuaciones de control del robot. EI mismo problema plantea
el enfoque del histograma de campo de potencial. Un problema afiadido de ambos métodos
es que obtienen los comandos del robot en dos fases separadas. En la primera fase se obtiene
la direccion objetivo en la que debe moverse el robot. En la segunda fase se generan los
comandos de modificacion de las velocidades lineales y angulares necesarios para conducir
al robot en la direccion deseada. Este enfoque sélo es factible si consideramos que las ace-
leraciones aplicables al robot son infinitas y el robot puede realizar de forma instantanea los
incrementos de velocidades. Sin embargo, la realidad es que las aceleraciones usadas en la
navegacion de robots moviles debe ser baja para obtener trayectorias suaves y no forzar a la
estructura mecanica del robot a tensiones excesivas.

Por otra parte, los enfoques de Simmons y Fox han demostrado ser capaces de controlar
con éxito robots méviles que actuan en entornos de oficina con gran cantidad de obstaculos
y personas en movimiento (una universidad en el primer caso, y un museo en el segundo).
Sin embargo, se trata de propuestas dificilmente generalizables a otro tipo de esquemas de
conducta distintos de la evitacidon de obstaculos, como puede ser el seguimiento de una pared,
la localizacién de esquinas o la localizacion y entrada en puertas abiertas.

Hay que hacer notar también que en todos estos enfoques se trabaja con informacion
proporcionada por sensores de rango de baja densidad y limitado alcance, como son los
ultrasonidos. Esto provoca, entre otros, el problema de ambigiiedad en la percepcion deno-
minadoperceptual aliasingen el que situaciones del robot distintas, en las que se deberian
tomar acciones también distintas, se solapan en una misma percepcion.
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Figura D.1: Una muestra del simulador sobre el que se ha realizado la experimentacién del
articulo. En la parte inferior de la figura se incluye el mapa de profundidad captado por el
robot. Tonos de gris oscuros corresponden con lecturas de profundidad cercanas.

D.1.2 Control local basado en reconocimiento estadistico de situaciones

En linea con las propuestas de Arkin y Chapman (Chapman 1991), la accion a ejecutar
vendra indexada por el esquema de conducta activo en ese momento y por la situacion del
entorno percibida por el robot. En la propuesta que presentamos en este trabajo formulamos
el problema del control local de un robot mévil como un problema de reconocimiento de
situaciones. Asociado a cada uno de los esquemas de actuacion definimos un conjunto
de acciones aplicables y aprendemos las situaciones de percepcion en las que esas deben
aplicarse.

Para obtener muestras de aprendizaje de un funcionamiento correcto del esquema opti-
mizamos una funcion que considera la trayectoria seguida por el robot, tanto en el espacio
cartesiano como en el espacio de velocidades lineales y angulares, y que premia trayectorias
consistentes con el esquema. Por ejemplo, para un esqegua-pared considera-
mos que la distancia cartesiana a la pared debe ser pequefia y uniforme, premiando aquellas
trayectorias con mayores velocidades lineales. Dado que el espacio de busqueda es enorme,
y que la funcién a optimizar no es susceptible de ser diferenciada, utilizamos para su reso-
lucion la técnica de algoritmos genéticos, disefiando una codificacion de las trayectorias del
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robot y un método de cruzamiento que han demostrado tener una alta efectividad.

A partir de las trayectorias obtenidas se generan todas las parejas de percepcién y accion
que el robot ha ido encontrando en la misma, y se agrupan en situaciones percibidas para un
mismo tipo de accion.

La dimensionalidad del espacio de percepcién debe ser alta para poder establecer di-
ferencias entre las pautas de percepcion asociadas a distintos esquemas de conducta. Por
ello utilizamos como entrada percivida el campo denso de profundidad existente frente al
robot mévil. Aunque hemos desarrollado el trabajo sobre un simulador (ver figura D.1),
existen técnicas que permiten obtener este campo de profundidad en tiempo real mediante
técnicas actuales de vision artificial (ver (Kanade, Kano, Kimura, Yoshida, y Oda 1995)
como ejemplo de utilizacion de vision estéreo).

Una forma de caracterizar estas situaciones es utilizar un técnica estadistica estandar
como es el Andlisis de Componentes Principales (Fukunaga 1990) para reducir la dimen-
sionalidad de las muestras de aprendizaje correspondientes a cada situacién. Veremos que
el analisis de componentes principales permite reducir los mapas densos de profundidad a
unos pocos parametros en los que se mantienen la identidad propia de cada situaciéon y que
pueden utilizarse de forma efectiva para el reconocimiento.

D.2 Aprendizaje y clasificacidon de situaciones

Una vez se han generado un conjunto de trayectorias correctas para el esquema que se esta
aprendiendo, utilizando el método propuesto en el apéndice anterior, se trata de caracterizar
las situaciones en las que el robot se va a encontrar cuando evolucione siguiendo ese esquema.

Modelamos el estado en el que puede encontrarse un robot mévil evolucionando por
un entorno mediante: 1) un mapa de denso de profundidad observado por el @bot
y 2) las velocidades lineales y angulares del mismg (). Definimos un mapa denso
de profundidad como el vectal(#), que nos indica la distancia a la que se encuentra el
obstaculo mas cercano en la orientacidconsiderando como O la orientacion frontal).

La obtencion de estos mapas de profundidad es inmediata en el simulador. Los limites del
angulod vienen dados por las caracteristicas de la camara. Para el presente articulo hemos
variadod entre -45 y 45 grados.

A partir de las trayectorias generadas por algoritmo genéticos se generan las estados
gue ha encontrado el robot en su evolucién siguiendo dichas trayectorias. Estos estados
se agrupan en conjuntos de situaciones prototipo que son aprendidos y reconocidos de la
forma que se explica a continuacién. Un ejemplo de campos de profundidad asociado a
una situacion determinada (en concreto, velocidad lineal del robot entre 60 y 70 cm/s) se
presenta en la figura D.2. Cada fila de la figura corresponde al mapa de profundidad en un
instante de tiempo.
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Figura D.2: Ejemplo del conjunto de muestras de entrenamiento de la situacion corres-
pondiente avgo (v € [60cm /s, 70cm/s]). Cada fila de la figura corresponde al mapa de
profundidad en un instante de tiempo.

D.2.1 Andlisis de Componentes Principales

El analisis de componentes principales ha sido utilizado con éxito recientemente en la co-
munidad de vision artificial para representar imagenes de caras humanas (Sirovich y Kirby
1997) y para reconocer imagenes de caras (Turk y Pentland 1991). Con esta técnica se
calculan los autovectores del conjunto de muestras de alta dimensionalidad y son usados
como base ortogonal para representar cada una de las muestras individuales. Estos autovec-
tores constituyen la dimensién de un subespacio de muestras, denomiaatimespacio
en el que las muestras se pueden representar de forma compacta. Utilizaremos este enfoque
aplicandolo al conjunto de mapas de profundidad de cada una de las situaciones.
Representamos, pues, esta distribucion de mapas de profundidad mediante una funcion
de perturbacion alrededor de un mapa de profundidad medio correspondiente a la situacion:

d(0) = do(0) + p(6) (D.1)

dondep(6) son pequefas fluctuacionggdy < 1 que capturan la identidad de cada
una de las muestras. El mapa de profundidad medio se calcula a partir de las muestras de
entrenamiento correspondientes a la situacion

1 n
do(0) = — ; d;(0) (D.2)
Para representar(©) de cada situacion realizamos un andlisis de las componentes prin-

cipales y se expanden las fluctuaciones en térmimos de un conjunto de autovégtores
extraidos a partir de cada distribucion siguiendo el procedimiento estandar (Fukunaga 1990).

d©) = do(0) + Y _ a/¥,(6) (D.3)
l

De esta forma, un mapa denso de profundidad correspondiente a una situacién deter-
minada pasa a representarse como una combinacion lineal de los modos de variacién mas
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importantes ¥;) sumado al mapa de profundidad medio. Por ello, considerando el nuevo
espacio paramétrico definido por los modos de variacion principales, un mapa de profundi-
dad pasa a representarse por el vebter (by, ..., b;) correspondiente a las coordenadas

en el nuevo espacio paramétrico, reduciéndose considerablemente la dimensionalidad de la
distribucion. Los autovalores asociados a cada uno de los autovectores representan la
varianza de cada uno de los modos de variacion principales.

D.2.2 Clasificacion

La proyecciorb de un mapa de profundidatden un autoespacis, se obtiene mediante la
ecuacion

b= Pl(d — do), (D.4)

siendoP, = [V, ..., ¥,] la matriz con log primeros autovectores.

Una métrica muy usada para cuantificar la pertenencia de una muestra a una distribu-
cion es la distancia de Mahalanobis, que mide la distancia de la muestra al centro de una
distribucién, ponderada por la varianza en cada uno de las dimensiones del eBpagio:

l 2
bk
Dwman(b, A) = Z ()»_k) (D.5)
k=1
El criterio usado para medir a que situacién pertenece un mapa de profundidad percibido
es escoger aquella situacion cuyo autoespacio minimiza la distancia de Mahalanobis con el
mapa de profundidad percibido:

situacion actua= mini_yDyvan(bi, Ai), (D.6)

siendor el numero de situaciones aprendidasla proyeccion del mapa de profundidad
actual en el autoespacio correspondiente a la situagién los autovalores de la situacién
i.

D.3 Resultados

Se ha realizado una implementacion del esquawaazar-evitando-obstaculos
siguiendo la propuesta del trabajo. Para ello se han generado comportamientos correspon-
dientes a ese esquema en distintos entornos aleatorios.

A partir de estas trayectorias hemos considerado 8 situaciones correspondientes a velo-
cidades linealesv{o, vy, . . ., vgg), cONv; agrupando las velocidades lineales en el rango (
cm/si + 10 cm/s), y 3 situaciones correspondientes a velocidades angubarggf,w1o),
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Figura D.3: Ejemplo del conjunto de muestras de entrenamiento de las situaciones corres-
pondiente asg, veo Y v70-

conw; agrupando las velocidades angulares en el rahgdb(grados/s; + 5 grados/s). Se
han obtenido muestras de los mapas de profundidad percibidos por el robot en cada una de
estas situaciones (en la figura D.2 se puede observar un ejemplo de los mapas de profundidad
asociados las situaciones,veo Y v70).

Se harealizado un analisis de componentes principales de las muestras correspondientes
a cada una de las situaciones, obteniéndose el autoespacio asociado a cada unade ellas. Enla
figura D.4 se muestran los mapas de profundidad medios correspondientes a las situaciones
v10, . . ., Ugo. ENellos se representa la distancia media (en centimetros) ala que se encuentran
obstaculos (desde -45 grados hasta 45 grados en direccion frontal) cuando el robot se movia a
lavelocidad correspondiente a cada una de las situaciones. Se puede ver que es coherente con
lo esperado: a velocidades mas altas el robot se encuentra los obstaculos a mayor distancia.

Por dltimo, la figura D.5 muestra un ejemplo de evolucién del robot utilizando el re-
conocimiento de situaciones propuesto anteriormente. Cada 0,2 segundos se realiza una
lectura del mapa de profundidad del entorno, se proyecta esa lectura sobre los autoespacios
correspondientes a cada una de las situaciones aprendidas y se obtiene la velocidad lineal
y angular a la que deberia estar moviéndose el mavil (aquellas con las que se minimiza su
distancia de Mahalanobis), modificandose las velocidades actuales consecuentemente.

D.4 Conclusiones

Se ha presentado un enfoque con el que es posible aprender automaticamente esquemas loca-
les de conducta que guian la navegacion de un robot mévil, aplicandose al ejemplo concreto
de avanzar evitando obstaculos. El método se puede resumir en: 1) generacion off-line de
trayectorias consistentes con el esquema de navegacién, 2) aprendizaje de las situaciones
de percepcion (mapas densos de profundidad) que el robot se ha encontrado cuando estaba
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Figura D.4: Mapas de profundidad medios correspondientes a cada una de las distintas
situaciones de velocidad lineal.

Figura D.5: Ejemplo de trayectoria seguida por el robot aplicando el algoritmo de control
basado en reconocimiento estadistico de situaciones.
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evolucionando en el entorno, agrupados por situaciones discretas (robot moviéndose entre
10y 20 cm/s, robot moviéndose entre 20y 30 cm/s, etc.) y 3) control del robot basado en el
reconocimiento de situaciones.

El primer aspecto se ha llevado a cabo utilizando técnicas de algoritmos genéticos, el
segundo con un andlisis de componentes principales y el tercero utilizando las distancias a
las distribuciones aprendidas.

Como trabajo futuro, estamos comenzando a caracterizar otros esquemas utilizando estas
técnicas (comaeguir-pared 0 entrar-en-puerta ) al tiempo que prentendemos
comprobar la validez del planteamiento en un robot real.
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