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Capítulo 1

Introducción

En esta tesis se estudian dos de los problemas fundamentales de la navegación de robots
autónomos, el problema de la localización y el de la construcción automática de mapas
del entorno. Proponemos abordar ambas cuestiones desde un punto de vista de estimación
bayesiana del estado y de búsqueda del modelo de máxima verosimilitud, aplicando técnicas
novedosas de modelado y de computación.

Para ilustrar el alcance de estas técnicas, describimos a continuación el comportamiento
de un robot guía de un museo. Esta tarea es un ejemplo típico de aplicación de los robots
móviles.

El robot guía se encuentra localizado en una determinada posición de un gran
salón en donde se distribuyen diversas obras, no sólo en las paredes sino también
por el centro del mismo. Una pantalla táctil situada sobre el robot permite
a los usuarios escoger la obra a la que se desea ir. Alguien pulsa la obra
situada al otro extremo del salón y el robot, después de planificar una trayectoria
factible que le llevará de la posición actual a la posición objetivo, comienza a
moverse, invitando con un sintetizador voz a que le sigan. Utiliza los lectores
de ultrasonidos y de láser para obtener lecturas de alcance del entorno, que
procesa para moverse evitando obstáculos y para actualizar de forma correcta
su localización, compensando los errores introducidos por la odometría. Al
comenzar a moverse, el robot despierta una gran curiosidad y bastantes personas
se agrupan a su alrededor, produciendo lecturas erróneas y bloqueando el camino
que se había calculado previamente. El robot corrige la trayectoria, encontrando
un camino alternativo y se mueve para evitar los nuevos obstáculos, llegando
al objetivo sin más problemas. Durante el camino ha ido anunciando las obras
que dejaba a derecha e izquierda. Una vez en el objetivo se detiene, listo para
volver a comenzar.
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Lectura
No lectura

Figura 1.1: Ejemplo de lecturas de sensores de ultrasonidos en una habitación.

En este ejemplo, el robot es capaz de contestar en cada momento a las siguientes tres
preguntas: ¿dónde estoy? ¿hacia dónde debo moverme? ¿cómo llegaré hasta allá?

Estas tres preguntas sugieren tres problemas fundamentales de la navegación: el pro-
blema de la localización, el problema de la planificación de conductas (trayectorias) y el
problema de la utilización de esquemas de actuación.

En el problema de localización, en concreto, el robot se mueve en un entorno de oficina
cuyo mapa se conoce de antemano, y cuenta con unos sensores de ultrasonidos con los
que obtiene una percepción local (y ruidosa) del entorno en el que se encuentra (ver figura
1.1). También existen en el robot unos contadores mecánicos que proporcionan información
métrica (también ruidosa) de los desplazamientos que realiza (odometría).

Se trata de encontrar, en todo momento, la posición del robot dentro del mapa conocido
a partir de la información de las lecturas del sonar y de las lecturas de odometría. En la
versión más complicada del problema, lalocalización global, se debe estimar la posición
del robotsin conocer su posición inicial. Frente a este problema, el delseguimiento de la
localizaciónes más sencillo, ya que se conoce a priori la posición del robot.

Las técnicas de localización deben tratar correctamente el problema de los objetos no
modelados en el entorno. Normalmente, el mapa que modela el entorno representa única-
mente las características principales del mismo. Sin embargo, cuando el robot evoluciona
por dicho entorno sus sensores se verán afectados por pequeños objetos no modelados (mobi-
liario, por ejemplo), por características que han cambiado (puertas que se abren o se cierran)
o por personas que se mueven en los alrededores. Las técnicas de localización deben ser lo
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t = 1

t = 30

t = 18

Figura 1.2: Muestras que representan la distribución de probabilidad de la posición del robot.

suficientemente robustas para contemplar estas diferencias.
En el problema de la construcción automática de mapas del entorno el robot explora un

entorno y almacena las lecturas de los sensores de ultrasonidos y las lecturas de odometría.
Una vez realizada la exploración, se debe determinar el modelo del entorno que mejor se
adapta a las lecturas recogidas. Normalmente, en el mapeado también hay que resolver el
problema de localización, ya que no se conocen las posiciones desde las que el robot ha
realizado las lecturas.

En esta tesis se presenta una solución al problema de la localización global utilizando
la estimación bayesiana. Este paradigma permite derivar una función de probabilidada
posteriori de la posición del robot, dado un mapa conocido del entorno, una secuencia de
lecturas de los sensores del robot y una secuencia de sus movimientos. Las posiciones
más probables serán aquellas que hagan más verosímiles dichas secuencias de lecturas y
movimientos, dado el mapa del entorno.

Uno de los problemas más graves de la aplicación de este enfoque es que, debido a
los problemas de obstáculos no modelados y de ambigüedad en la percepción del entorno,
la función de probabilidad a posteriori es muy compleja y no puede aproximarse a una
distribución normal (frecuentemente es multimodal). La solución novedosa que aportamos
es la utilización del filtrobootstrapque representa la función de probabilidad mediante un
conjunto de muestras extraídas de la misma. Por ejemplo, en la figura 1.2, se representan
todas las muestras que definen la probabilidad de localización a posteriori en tres instantes
de tiempo de un recorrido del robot por un pasillo.

Para calcular la función de probabilidad, y aplicar el algoritmobootstrapes necesario
formular un modelo de observación, que define la verosimilitud de las lecturas obtenidas
por los sonares dada una posición en un determinado entorno, y un modelo de movimiento
del robot. Presentamos en la tesis un modelo novedoso de observación, basado en un
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Figura 1.3: PIXIE en un pasillo.

modelo realista del comportamiento del sensor de ultrasonidos, que tiene como características
principales la robustez frente a obstáculos no modelados y la alta efectividad en situaciones
que otros modelos más simples perciben como ambiguas.

En lo que se refiere al problema del mapeado, proponemos la utilización de modelos pa-
ramétricos del entorno y de un algoritmo deestimación-maximización(EM) para obtener los
parámetros del mapa que maximizan la verosimilitud de las lecturas. Se utiliza como método
de estimación el algoritmo de localización, al que se añade una fase posterior de suavizado
de las muestras para reducir la ambigüedad en situaciones ruidosas. La maximización se
utiliza mediante un sencillo algoritmo de búsqueda adaptativa.

Se han probado los métodos con datos obtenidos de un simulador propio (figura 1.4) y de
PIXIE (figura 1.3), un robot móvil RWI B-21 con un anillo de 24 sensores de ultrasonidos.

Una de las características principales del simulador construido es su flexibilidad. Por
ejemplo, es posible obtener datos de distintos modelos de entorno, modificar el comporta-
miento de las lecturas de los sensores de ultrasonidos, introduciendo distintos tipos de ruido
aleatorio, o añadir ruido en las lecturas de odometría. La utilización del simulador permite,
en la fase de diseño de los algoritmos, controlar mejor sus distintas variables y proporciona
una enorme flexibilidad por la posibilidad de repetir de forma controlada los experimentos.
El robot PIXIE se ha utilizado para tomar datos reales con los que validar el funcionamiento
correcto de los algoritmos propuestos.

Tanto el filtrobootstrapcomo los enfoques bayesianos se han popularizado recientemente
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Figura 1.4: Simulador con el que se ha realizado parte de la experimentación.

en la comunidad científica dedicada a la Visión Artificial. Muchas de las ideas aportadas en
esta tesis han surgido de la adaptación de técnicas recientes de este campo a los métodos de
navegación.

El resto de la tesis se organiza de la siguiente forma. El capítulo 2 presenta los pro-
blemas de localización y mapeado, haciendo un repaso de las distintas técnicas propuestas.
Se presenta también en el capítulo una formalización de los problemas en términos de es-
timación bayesiana que proporciona el marco conceptual del resto de la tesis. El capítulo
3 presenta la propuesta de modelo del sensor, junto con experimentos que muestran su co-
rrecto funcionamiento. En el capítulo 4 se proponen los modelos necesarios para utilizar
el enfoque bayesiano. Estos modelos son los mapas paramétricos del entorno, el modelo
de observación y el modelo de movimiento. El capítulo 5 está dedicado a la presentación
del filtro bootstrapy a su aplicación a la solución del problema de localización global. Por
último, el capítulo 6 propone un algoritmo EM para resolver el problema del mapeado. En
este capítulo se presenta una técnica para suavizar la probabilidad asociada a las muestras
resultantes del filtrobootstrapy se utiliza una búsqueda adaptativa para encontrar el modelo
paramétrico que mejor se adapta a las lecturas obtenidas. En el capítulo 7 se resumen todas
las aportaciones de la tesis y se comentan posibles líneas futuras de trabajo.

Los apéndices amplían algunos conceptos importantes y presentan trabajos previos re-
lacionados con el tema de la tesis. El primero de ellos describe el método estadístico del
muestreo por rechazo para muestrear funciones de densidad. El apéndice B describe el algo-
ritmo EM. Los apéndices C y Dpresentan trabajos previos al desarrollo del cuerpo central de
la tesis, relacionados con las conductas y las trayectorias de los robots móviles, y que sirvie-
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ron para plantear algunas de las problemáticas de las que han surgido esta tesis. En concreto,
el apéndice 3 propone la utilización de algoritmos genéticos para resolver el problema de la
planificación de trayectorias, y el apéndice 4 utiliza estas trayectorias como modelos de los
que extraer características comunes que definen conductas locales de navegación, utilizando
el análisis de componentes principales (PCA).



Capítulo 2

Localización y mapeado en entornos
de oficina

La localización de un robot móvil en un entorno conocido es uno de los problemas funda-
mentales de la robótica móvil, junto con la construcción automática de mapas del entorno.
Se han propuesto un gran número de modelos, enfoques y técnicas para resolver ambos
problemas. Muchas de estas técnicas presentan solucionesad-hocque sólo son útiles en
situaciones muy específicas.

Frente a este tipo de técnicas, han aparecido recientemente algunas propuestas generales
que utilizan enfoques bayesianos, como por ejemplo los modelos de Markov o las redes
bayesianas.

Presentamos en este capítulo una formalización del problema de la localización y del
mapeado que unifica las propuestas recientes y que proporciona una notación uniforme y
coherente. Esta formalización sirve de marco conceptual en el que es posible desarrollar
distintas implementaciones y técnicas.

Los elementos fundamentales de la formulación de ambos problemas son la definición
de unmodelo de observaciónque proporciona la probabilidad de las lecturas de los sensores
dada una posición en el entorno definido y la definición de unmodelo de movimientoque
proporciona la probabilidad de la siguiente posición del robot, dada la posición actual y la
acción ejecutada.

En capítulos siguientes presentaremos propuestas concretas para ambos modelos y al-
goritmos y técnicas de localización y mapeado basadas en esta formalización.

25
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2.1 Introducción

Para navegar de forma robusta en entornos de oficina, un robot debe saber dónde se encuentra
dentro de ese entorno. En los últimos años viene existiendo un gran interés en el desarrollo
de algoritmos para estimar la localización del robot a partir de los datos percibidos por sus
sensores. En el contexto de los robots móviles, el problema general de la localización puede
ser formulado de la siguiente forma.

Dado: Un modelo del entorno, como una descripción geométrica, un mapa topológico o
una rejilla de ocupación.

Tarea: Estimar la localización del robot en el modelo basándose únicamente en observacio-
nes efectuadas por el robot. Dichas observaciones suelen consistir en información de
odometría acerca de los movimientos realizados por el robot y en información de dis-
tancias a los obstáculos más cercanos obtenidas mediante sensores de alcance (sonar,
láser)1. Las observaciones también pueden consistir en imágenes obtenidas por una
cámara montada en el robot, en cuyo caso estamos ante un problema delocalización
visual.

Un problema fuertemente ligado al de localización es el de la construcción automática
del mapa del entorno. También en los últimos años se han desarrollado métodos para estimar
y mantener modelos del entorno de forma autónoma. Este problema se puede formular de
la siguiente forma.

Dado: Una serie de observaciones realizadas por el robot evolucionando por el entorno.
Las observaciones, al igual que en el problema de la localización, suelen consistir en
información de odometría e información de lecturas de alcance.

Tarea: Construir un modelo del entorno que pueda ser utilizado por los algoritmos de
localización. Posibles modelos son descripciones geométricas del entorno, mapas
topológicos o rejillas de ocupación.

Los modelos y métodos propuestos para resolver los problemas de localización y ma-
peado deben tratar con ciertas limitaciones y restricciones prácticas del funcionamiento de
los robots móviles. Algunas de ellas son las siguientes.

1. Localidad de los sensores.El rango de percepción de la mayoría de sensores (ultra-
sonidos, láser, cámaras) está limitado a una zona pequeña alrededor del robot. Para
adquirir información global, el robot debe explorar activamente su entorno.

1Es importante resaltar que sólo se dispone de información local sobre la posición del robot. Evidentemente,
si se contara con información global sobre su posición (mediante un sistema GPS, por ejemplo), el problema de
la localización no existiría.
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2. Ruido en los sensores.Las observaciones realizadas por los sensores son normal-
mente ruidosas, y la distribución estadística de este ruido no suele ser sencilla de
modelar.

3. Ruido en la posición.Los movimientos del robot no suelen ser exactos, produciéndose
los denominados errores de odometría. Estos errores son, además, acumulativos con
la distancia recorrida. Por ejemplo, pequeños errores en la rotación del robot pueden
tener efectos importantes en la estimación de los movimientos de traslación y en la
determinación de la posición final del robot.

4. Entornos complejos y dinámicos.Los entornos de oficina en los que evoluciona el
robot suelen ser complejos y dinámicos, haciendo prácticamente imposible mantener
modelos consistentes de los mismos.

5. Necesidad de tiempo real.Los requisitos de la aplicación (control de un robot móvil)
obligan a procesar la información en un tiempo real. Esto limita la complejidad del
procesamiento realizado por los métodos de localización, así como los modelos del
entorno.

En los siguientes apartados revisaremos los distintos aspectos de los problemas de locali-
zación y mapeado. Comenzaremos estudiando los distintos modelos del entorno propuestos
en la literatura, a continuación presentaremos las aproximaciones al problema de la localiza-
ción y al problema del mapeado. Se concluirá el capítulo definiendo formalmente el marco
de estimación bayesiana, aplicado tanto a localización como a mapeado.

2.2 Modelos del entorno

Un elemento fundamental de la localización y el mapeado es el modelo de representación
del entorno. Un modelo o mapa del entorno es una abstracción con la que se representan
únicamente aquellas características del entorno que se consideran útiles para la navegación
o la localización del robot. Al realizar esta abstracción se desechan características de grano
fino que no se consideran útiles, debido a que pueden ser demasiado variables o no pueden
ser detectadas con fiabilidad por los sensores.

La utilidad principal de un modelo del entorno es proporcionar el elemento fundamental
para la localización del robot. En general, los algoritmos de localización suelen comparar
las lecturas obtenidas por los sensores del robot con el modelo del entorno, actualizando
la posición del robot de forma acorde con el resultado de esta comparación. La forma de
realizar la comparación depende totalmente del tipo de modelo de entorno y de la propuesta
realizada.
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Se han desarrollado dos paradigmas fundamentales de modelado de los entornos de ofi-
cina: modelos métricos y modelos topológicos. A su vez, los modelos métricos pueden
dividirse en modelos basados en rejillas y en modelos geométricos. En los siguientes apar-
tados se revisarán los modelos de entorno más utilizados en la literatura, analizando las
características y suposiciones de cada enfoque.

2.2.1 Mapas topológicos

La idea central de los mapas topológicos es representar las características esenciales del
entorno percibidas por el robot móvil utilizando un grafo como un modelo de alto nivel. Los
nodos se utilizan para representar lugares del entorno y los arcos caminos entre los luga-
res. Los lugares constituyen zonas del entorno (landmarks) con características sensoriales
distinguibles de forma absoluta, o respecto a sus nodos vecinos.

Los nodos corresponden a la unidad elemental de localización, de manera que toda una
zona geométrica del mapa real se representa por un único lugar. A partir del mapa topológico
no es posible distinguir localizaciones más finas que las representadas por los lugares.

Veamos, como ejemplo, la propuesta de mapas topológicos de Kuipers (Kuipers y Byun
1991)(ver figura 2.1).

Los nodos corresponden a puntos distintivos del entorno y los arcos a caminos recorridos
por el robot. Una posición del entorno correspondiente a un nodo debe distinguirse local-
mente de su vecindad mediante algún criterio definible en términos de los datos sensoriales.
En el caso de los experimentos realizados por Kuipers, la función de distinción calcula el
número de objetos cercanos que se encuentran a igual distancia del robot.

Los arcos entre los nodos representan caminos que se han seguido para llegar de un nodo
a otro utilizando una determinada estrategia de control local (seguir centro de pasillo, seguir
pared a la derechao seguir pared a la izquierda).

Los mapas topológicos han sido utilizados, con múltiples variantes, a lo largo de los
últimos años (Mataric 1992; Pierce y Kuipers 1994; Kortenkamp y Weymouth 1994; Shatkay
y Kaelbling 1997; Nourbakhsh, Powers, y Birchfeild 1995; Ryu y Yang 1988; Koenig y
Simmons 1998; Thrun 1998; Thrun, Burgard, y Fox 1998).

Un inconveniente de los mapas topológicos es que la necesidad de distinción sensorial
entre lugares hace imposible la representación de zonas abiertas (habitaciones grandes, halls)
en las que el alcance limitado de los sensores no obtiene información.

Otro punto débil es que la definición de lugares y la conexión entre los mismos es muy
dependiente de la aplicación, no utilizándose normalmente ningún criterio formal para su
construcción.

Por último, como se puede comprobar en el ejemplo de la figura 2.1, los mapas cons-
truidos dependen excesivamente de la historia de las percepciones del robot al construirlos
(por ejemplo, el arco entreP1 y P2 está etiquetadoseguir pared izquierdaporque esa es
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Figura 2.1: Ejemplo de mapa topológico de Kuipers.

precisamente la conducta local que el robot siguió para ir de un nodo a otro). Esto los hace
muy sensibles a la aparición de elementos no modelados (personas, obstáculos imprevistos)
que proporcionan información sensorial muy distinta de la modelada, haciendo que el robot
pierda su localización.

Por otro lado, los modelos topológicos proporcionan ventajas a la hora de realizar una
planificación de la trayectoria del robot, facilitan la interfaz con planificadores simbóli-
cos y proporcionan un interfaz más natural para la interacción con instrucciones humanas
(posibilitan órdenes del tipo"ir a la habitación A").

2.2.2 Rejillas de ocupación

Las rejillas de ocupación, inicialmente propuestas por Moravec y Elfes (Moravec y Elfes
1985), discretizan el entorno en celdillas de igual dimensión. Cada celdilla mantiene la
probabilidad de que la zona del entorno asociada a ella esté ocupada. En la figura 2.2 se
muestra un ejemplo de una rejilla de ocupación.

Es posible utilizar rejillas de ocupación definidas por el usuario, pero lo usual es que sea
el propio robot móvil el que realize la construcción de la rejilla de forma autónoma, mediante
algún algoritmo de exploración (Elfes 1987; Weigl, Siemiatkowska, Sikorski, y Borkowski
1993; Thrun, Burgard, y Fox 1998).

Las rejillas de ocupación se han utilizado desde entonces en numerosos enfoques de
localización (Matthies y Elfes 1988; Courtney y Jain 1994; Schiele y Crowley 1994; Stevens,
Stevens, y Durrant-Whyte 1995; Oriolo, Vendittelli, y Ulivi 1995; Daniel Pagac 1996;
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Figura 2.2: Ejemplo de rejilla de ocupación (tomado de (Thrun, Burgard, y Fox 1998)).

Yamauchi 1996) normalmente para alinear mapas locales construidos mediante los datos de
los sensores con el mapa de ocupación global.

En los últimos años ha resurgido el interés en las rejillas de ocupación al aparecer
algoritmos que permiten manejar el problema de los errores de odometría en la construcción
de rejillas de entornos de gran tamaño (ver (Thrun 1998; Thrun, Burgard, y Fox 1998)).

2.2.3 Modelos geométricos

Los modelos geométricos definen el entorno mediante sus características geométricas (dis-
tancias, dimensiones de los elementos que lo componen, posiciones absolutas). La ventaja
principal de estos modelos es que, si se utilizan junto con un buen modelo del sensor, es
posible simular los datos que los sensores del robot obtendrían en cualquier posición del
entorno. Esto hace posible comparar los datos percibidos por el robot con los datos que
se obtendrían en posiciones candidatas, calculándose una actualización de la probabilidad
asociada a cada posición.

Existen distintos tipos de modelos geométricos. Un primer enfoque define el entor-
no mediante un conjunto de características geométricas (segmentos de rectas, esquinas) y
mediante las relaciones geométricas entre ellas (distancia, posición, etc.). Ejemplos de utili-
zación de estos modelos son los trabajos (Drumheller 1987; Neira, Horn, Tardos, y Schmidt
1997; Ohya, Nagashima, y Yuta 1994; Chong y Kleeman 1997; Leonard, Durrant-Whyte, y
Cox 1992; Cox 1991; Ayache y Faugeras 1989).
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Otro enfoque, los modelos geométricos basados en características, se relaciona directa-
mente con implementaciones de modelos de sensor en las que se utilizan estas características
geométricas como elementos base del modelado (Barshan y Kuc 1990; Kuc 1990; McKe-
rrow 1993). En la figura 2.3 se muestra un ejemplo de mapa del entorno construido a base
de las características geométricas definidas por Leonard (Leonard y Durrant-Whyte 1992):
esquinas, aristas y segmentos de rectas.

Figura 2.3: Ejemplo de modelo geométrico del entorno. Las características geométricas
usadas en el modelo son:esquinas, aristasy segmentos de rectas.

Otro conjunto de modelos geométricos definen el entorno mediante un mapa CAD del
mismo (Burgard, Fox, Henning, y Schmidt 1996; Burgard, Cremers, Fox, Hahnel, Lakeme-
yer, Schulz, Steiner, y Thrun 1998). Un mapa CAD refleja los elementos del entorno que
se desea modelar, recogiendo sus dimensiones y posiciones. En la figura 2.4 se muestra un
ejemplo de mapa CAD de un entorno.

Cuanto más detallado sea el modelo CAD mayor calidad tendrán las simulaciones de
las lecturas de los sensores del robot en las posiciones candidatas. Evidentemente, para
obtener simulaciones de lecturas de buena calidad es necesario utilizar un buen modelo del
sensor. Burgard (Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y Thrun
1998) propone utilizar una simulación sencilla de sensores de rango, obteniendo la distancia
angular con los obstáculos del entorno en una posición determinada.

Por último, los trabajos (Weib, Wetzler, y Puttkamer 1994; Lu y Milios 1994; Gutmann
y Schlegel 1996; Lu y Milios 1997) proponen utilizar como modelo del entorno los propios
datos percibidos por los sensores del robot (figura 2.5), aplicándoles el mínimo tratamiento
posible (si acaso, una corrección de odometría). El problema principal de esta representación
es que no se realiza ningún filtrado para eliminar ruido procedente de lecturas erróneas, por
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Figura 2.4: Ejemplo de modelo CAD del entorno.

Figura 2.5: Ejemplo de modelo sensorial del entorno, en el que el entorno es el mismo que
el modelado por las figuras 2.3 y 2.4.
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lo que sólo es aplicable a sensores muy precisos (sensores de alcance por láser).

2.3 Aproximaciones al problema de la localización

Una vez revisados los principales tipos de modelos de entorno, pasamos a tratar el problema
de la localización. Localización es el proceso de estimar la posición de un robot móvil en
un mapa que determina un sistema de coordenadas globales. Las fuentes de información
disponibles para resolver el problema son las observaciones del entorno realizadas por el
robot y sus lecturas de odometría (incrementos de posición registrados por el robot).

Otros enfoques más aplicados utilizan elementos externos incorporados artificialmente
al entorno (como reflectores, marcas visuales, líneas, etc.) para triangular la posición del
robot (ver el informe de Borenstein (J. Borenstein 1996) para un exhaustivo repaso de este
tipo de técnicas). Descartamos la utilización de estos enfoques por la estructuración artificial
que imponen en el entorno.

Es posible identificar dos variantes del problema general, dependiendo de si se supone
conocida la posición inicial del robot o de si la desconocemos. Los enfoques delocalización
localsuponen conocida la posición del robot y realizan un seguimiento (tracking) de la misma
para estimar la siguiente posición. Por otro lado, los enfoques delocalización globalintentan
estimar la posición del robot, sin tener un conocimiento a priori de la misma, utilizando la
información de las lecturas en varios instantes de tiempo.

Revisaremos en este apartado distintas aproximaciones al problema de localización.

2.3.1 Localización local

El problema de la localización local se puede formular como el problema de realizar un
seguimiento del estado del robot que compense los errores de odometría mediante el uso de
observaciones del entorno.

Métodos basados enlandmarks

Un conjunto de técnicas atacan el problema mediante la identificación delandmarksen
las observaciones. Las posiciones de estoslandmarksson conocidas, y con ellas puede
corregirse la posición del robot. Ejemplos de algoritmos que han implementado con éxito
estas técnicas son (Kuipers y Byun 1991; Kortenkamp y Weymouth 1994; Nourbakhsh,
Powers, y Birchfeild 1995; Koenig y Simmons 1998; Ryu y Yang 1988).
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Métodos basados en emparejamiento de características

Se han propuesto distintos algoritmos basados en el siguiente esquema genérico: (1) estimar
características locales a partir de las últimas observaciones y (2) encontrar la mejor corrección
a la posición actual del robot maximizando la correlación entre las características locales y
el mapa del entorno.

Por ejemplo, Weib (Weib, Wetzler, y Puttkamer 1994) construye histogramas locales a
partir de barridos de sensores láser, que después se correlacionan con histogramas almace-
nados. Yamauchi (Yamauchi 1996) aplica una técnica similar, pero utilizando rejillas de
probabilidad (Moravec y Elfes 1985) como elementos de emparejamiento.

Métodos basados en el filtro de Kalman

El enfoque más usado para resolver el problema de la localización local es la utilización
delfiltro de Kalman(Sorenson 1970), una conocida técnica para integrar información en el
tiempo. Este método fue inicialmente propuesto por Kalman (Kalman 1960) para estimar
el estado de un proceso dinámico lineal arbitrario. Cada variable que describe el estado del
proceso se representa mediante una distribución normal. Los parámetros de la distribución
(media y varianza) se actualizan siempre que se aplica un comando de control al sistema y
siempre que los sensores realizan nuevas mediciones. Estas dos actualizaciones del estado
se suelen denominarprediccióny corrección. En la fase de predicción, se modela el cambio
del estado debido a las acciones de control. En la fase de corrección se combina la estimación
del estado producida por la fase anterior con las lecturas realizadas por los sensores. Tal y
como se verá, estas dos fases también están presentes en la estimación bayesiana. De hecho,
se ha demostrado que el filtro de Kalman puede verse como un caso particular del enfoque
de estimación bayesiana (Barker, Brown, y Martin 1994).

La aplicación del filtro de Kalman a la localización de robots móviles estima la posi-
ción (x, y, θ) del robot en el entorno mediante una distribución normal. La covarianza de
esta distribución representa la incertidumbre local en la posición estimada. Siempre que se
mueve el robot, la posición estimada se desplaza según la distancia medida por la odometría
del robot. Las observaciones realizadas por los sensores se utilizan para actualizar la distri-
bución de probabilidad de la localización, buscando la nueva distribución que maximiza la
verosimilitud de las lecturas.

La mayoría de algoritmos que aplican el filtro de Kalman utilizan modelos de movimiento
similares, pero difieren en cómo se calcula la verosimilitud de las lecturas de los sensores.
Existen dos grupos principales de técnicas: basadas en características y basadas en rejillas
de ocupación.

Entre las primeras, Leonard (Leonard, Durrant-Whyte, y Cox 1992) busca emparejar
características extraidas de las lecturas de sonar con características predichas a partir de un
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mapa geométrico del entorno. Las características son planos, cilindros y esquinas basados
enregiones de profundidad constanteestimadas a partir de las lecturas del sonar. Cox (Cox
1991) utiliza distancias medidas por sensores de rango de infrarrojos y las compara con
una descripción del entorno basada en segmentos de rectas. Gutmann (Gutmann y Schlegel
1996) extiende este trabajo a modelos del mundo aprendidos en una fase de exploración
previa.

Entre las segundas, Schiele (Schiele y Crowley 1994) compara distintas estrategias de
seguimiento de la posición del robot basadas en rejillas de ocupación y en sensores de
ultrasonidos. En esta propuesta se construye una rejilla de ocupación local que se se empareja
con la rejilla global para producir una posición estimada que se combina con estimaciones
previas mediante el filtro de Kalman.

Como conclusión, todas las implementaciones de técnicas basadas en el filtro de Kalman
suponen que la posición del robot puede representarse mediante una función de densidad
normal. Esta limitación hace que estas técnicas no sean robustas a ruido no modelado, ya que
únicamente permiten representar una única posición posible del robot (función de densidad
unimodal).

En condiciones normales, el ruido en las observaciones (clutter) producido por obstácu-
los no modelados hará dedistractordel filtro y podrá ocasionar que el robot pierda totalmente
su localización.

La suposición de localización gaussiana hace también difícil tratar el problema de la
localización global, ya que no se dispone de una estimación inicial para la localización.
Además, debido a la ambigüedad en la percepción del entorno (distintas zonas del entorno
pueden generar mediciones similares), es necesario utilizar una función de distribución
multimodal para representar la posible localización del robot.

2.3.2 Localización global

Tradicionalmente se ha supuesto que para solucionar el problema de la localización global
son necesarias técnicas basadas en búsqueda, como la propuesta por Drumheller (Drumheller
1987).

El método de Drumheller obtiene un conjunto de características (segmentos de rectas)
a partir de las lecturas de los sonares del robot y busca el mejor emparejamiento entre
estas características y el modelo del entorno, utilizando un algoritmo de emparejamiento de
características propuesto por Grimson (Grimson 1990). Como hace notar Leonard (Leonard
y Durrant-Whyte 1992), el uso de técnicas de búsqueda no es lo suficientemente eficiente
para un modo de funcionamiento continuo de un robot móvil. El enfoque de búsqueda fue
abandonado por la comunidad de robótica móvil, y el problema de la localización global ha
permanecido sin solución hasta la utilización de enfoques bayesianos (Nourbakhsh, Powers,
y Birchfeild 1995; Simmons y Koenig 1995; Kaelbling, Cassandra, y Kurien 1996; Burgard,
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Fox, Henning, y Schmidt 1996). Estos enfoques se pueden dividir en dos grandes grupos:
los que utilizan modelos topológicos y los que usan rejillas de probabilidad. Revisaremos
ambos métodos después de introducir los fundamentos de la localización bayesiana.

2.4 Aproximaciones al problema del mapeado

Al igual que los modelos del entorno, podemos distinguir dos enfoques fundamentales al
problema del mapeado, a saber, enfoques métricos y enfoques topológicos.

Enfoques métricos

Uno de los métodos más antiguos y usados de construcción de mapas del entorno son las
rejillas de ocupación. Las rejillas de ocupación fueron propuestas inicialmente por Elfes y
Moravec (Moravec y Elfes 1985; Elfes 1987), y desde entonces se han adaptado en numero-
sos sistemas robóticos (Borenstein y Korem 1991; Yamauchi 1996; Burgard, Fox, Henning,
y Schmidt 1996; Thrun, Bucken, Burgard, Fox, Frohlinghaus, Hennig, Hofmann, Krell, y
Schmidt 1998). Constituyen uno de los primeros enfoques probabilísticos capaces de fusio-
nar distintas observaciones realizadas por el robot, además de resaltar el papel fundamental
del modelo del sensor en la construcción de los mapas. Su principal problema es la au-
sencia de mecanismos correctores de los errores de odometría, por lo que no es factible la
construcción de mapas de tamaño medio. Este problema ha sido atacado por Thrun (Thrun
1998) mediante la utilización de la hipótesis de ortogonalidad y paralelismo de las paredes
del entorno.

Otros enfoques métricos utilizan modelos geométricos del entorno. Por ejemplo, Chatila
y Laumon (Chatila y Laumond 1985), en una propuesta similar a la planteada en nuestro tra-
bajo, proponen representar el entorno mediante polígonos en un sistema de referencia global.
En la propuesta se sugiere descomponer el espacio libre en un pequeño número de celdas
correspondientes a habitaciones, pasillos, puertas, etc. Sin embargo, aunque el enfoque
contiene elementos muy atractivos, no se detalla el mismo ni se presentan experimentos que
demuestren su aplicabilidad. Leonard (Leonard y Durrant-Whyte 1992) propone la cons-
trucción iterativa, mediante un filtro de Kalman, de una interpretación del entorno basada en
características elementales como segmentos y esquinas. Thrun (Thrun 1997) construye ma-
pas geométricos de forma incremental a base de concatenar segmentos de rectas detectados
en secuencias temporales de mediciones de sonar.

Por último, un conjunto de métodos suponen que se parte de ciertos modelos a priori del
entorno e intentan ajustar distintos parámetros del modelo mediante las lecturas realizadas
por el robot. Es el caso de los trabajos de Koenig y Simmons (Koenig y Simmons 1996)
y Shatkay (Shatkay y Kaelbling 1997), que utilizan el algoritmo EM (también conocido
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como Baum-Welch) (Rabiner y Juang 1986) para realizar la estimación. Recientemente,
Thrun (Thrun 1998) ha formulado el problema de la construcción de mapas del entorno
en términos bayesianos (como detallaremos en el apartado 2.6). Sin embargo, ha aplicado
esta formulación al problema más restringido de encontrar el mejor mapa del entorno que
explica una secuencia de observaciones den tipos de landmarks, observaciones que han sido
recogidas de forma manual.

Enfoques topológicos

Los enfoques topológicos definen los mapas como grafos, con los nodos correspondiendo a
lugares y los arcos a acciones genéricas que mueven el robot de un lugar a otro. A menudo
se añade a estos grafos información métrica que facilita la navegación de un lugar a otro.
Intentan resolver, sobre todo, el problema del mapeado global.

Uno de los primeros trabajos en esta línea fue el de Kuipers y Byun (Kuipers y Byun 1988;
Kuipers y Byun 1991). Los nodos de su propuesta se corresponden con lugaresdistinguibles
del entorno mediante alguna función genérica aplicada a los datos percibidos por los sensores.
En concreto, proponen utilizar como medida de distinción de los lugares el número de
obstáculos equidistantes. De esta forma los nodos de sus grafos topológicos representan
máximos locales de esta medida de distinción. Los arcos corresponden a conductas de
navegación que el robot utiliza para moverse de un lugar a otro (como"seguir pared", o
"seguir pasillo") junto con información métrica adicional sobre la conducta de navegación
seguida. El robot explora el entorno y construye el mapa topológico de forma incremental,
conforme va encontrando nuevos lugaresdistinguibles. Sin embargo, estas propuestas sólo
han sido comprobadas en entornos simulados y, en estas simulaciones, el robot contaba con
una brújula que eliminaba los errores de odometría en la orientación.

Un enfoque similar fue propuesto por Mataric (Mataric 1992). Su algoritmo utiliza como
nodos topológicoslandmarkspredefinidos como segmentos rectos, puertas o esquinas. Los
lugares topológicos vecinos que va encontrando el robot se conectan mediante aristas que
representan también conductas de navegación junto con información métrica que ayuda a
localizar al robot. La propuesta fue probada en un robot real evolucionando en una pequeña
habitación. Los problemas del método propuesto residen en la dificultad de tratar mapas de
mayor tamaño y en la sensibilidad del mismo a falsas detecciones delandmarks.

2.5 Fundamentos de la localización bayesiana

La localización bayesiana proporciona un potente marco probabilístico general para estimar
la posición de un robot móvil en a partir de las observaciones realizadas por el robot y a las
acciones realizadas.
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Se han realizado distintas propuestas e implementaciones de este paradigma (Nourbak-
hsh, Powers, y Birchfeild 1995; Simmons y Koenig 1995; Kaelbling, Cassandra, y Kurien
1996; Burgard, Fox, Henning, y Schmidt 1996). En el capítulo 5 aportaremos una nue-
va propuesta, basada en la utilización de métodos estocásticos de muestreo, que mejora la
eficiencia y la precisión de las implementaciones realizadas hasta el momento.

Formularemos en esta sección el enfoque bayesiano utilizando una notación general en la
que tendrán cabida distintas implementaciones específicas. Estas implementaciones (filtros
de Kalman, rejillas de probabilidad y métodos topológicos) se revisarán posteriormente.

2.5.1 Definiciones y consideraciones previas

Para definir formalmente la localización bayesiana, sea(x1, x2, . . . , xt ) una secuencia de va-
riables aleatorias que representan el estado del robot móvil en sucesivos instantes de tiempo.
La variable aleatoriax puede estar definida sobre el espacio paramétrico de configuraciones
(x, y, θ) del robot (siendox ey coordenadas cartesianas en un mapa global del entorno yθ

la orientación del robot) o puede tomar valores en el espacio discreto de nodos topológicos
que representan el entorno.

En cada instante de tiempot el robot realiza una observaciónzt del entorno y realiza una
acciónat . La variable aleatoriaz puede ser una tupla con valores de distancias medidas por
sonares o por sensores láser, o puede ser una imagen del entorno tomada por una cámara.
La acciónat proporciona información sobre el siguiente estadoxt+1 del robot y puede tomar
valores en el espacio de velocidades(v, ω) del robot (dondev es la velocidad lineal yω la
angular), puede también representar incrementos de posición(4x,4y,4θ) obtenidos de
los mecanismos deodometríadel robot, o puede representar un valor tomado de un espacio
discreto de comandos (moverse en la direcciónθ , seguir paredo girar a la derecha).

El enfoque bayesiano nos permite estimar la función de densidad de la posición del robot
xt en el instantet , dadas las observaciones y acciones realizadas hasta ese instante y dada la
probabilidad a priorip(x1). Esta función de densidad representa laprobabilidad a posteriori
después det instantes de tiempo, y se formula matemáticamente como

p(xt | z1, . . . , zt ,a1, . . . ,at−1). (2.1)

Veremos a continuación una formulación recursiva que permite la actualización de la
función de densidad en el instantet , p(xt ) a partir de la densidad en el instante anterior,
p(xt−1), de los datos medidos en el instantet , zt , y de la acción previaat−1.

Para llegar a esta formulación es necesario considerar dos suposiciones, a saber, la con-
dición de Markov del modelo dinámico y la independencia de las observaciones. Tratamos
cada suposición por separado.
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Condición de Markov

El modelo dinámico del robot determina la información que las acciones y los estados previos
proporcionan sobre el estado actual. La formulación de este modelo se expresa como una
función de probabilidad condicional

p(xt | x1, . . . , xt−1,a1, . . . ,at−1).

La condición de Markov sobre el modelo dinámico determina que el nuevo estado de-
pende únicamente del estado y de la acción anterior. Esto es,

p(xt | x1, . . . , xt−1,a1, . . . ,at−1) = p(xt | xt−1,at−1). (2.2)

La condición de Markov establece que el conocimiento de las acciones y posiciones
previas,(a1, . . . ,at−2, x1, . . . , xt−2), no proporciona ninguna información adicional a la
derivada de conocer la posición y acción inmediatamente previas.

Independencia en las observaciones

La segunda suposición se refiere a las medidasz observadas por el robot. Se supone que
dichas observaciones son independientes con respecto al tiempo, esto es, que

p(z1, . . . , zt | x1, . . . , xt ,a1, . . . ,at−1) =
t∏
i=1

p(zi | xi ,ai−1), (2.3)

y que la probabilidad de la observación depende del estado y no de la acción previa

p(zi | xi ,ai) = p(zi | xi). (2.4)

Así,

p(z1, . . . , zt | x1, . . . , xt ,a1, . . . ,at−1) =
t∏
i=1

p(zi | xi). (2.5)

Esta suposición permite formular la función de probabilidad conjunta de todas las obser-
vaciones como el producto de lafunción de verosimilitudde cada lectura. La suposición de
independencia, a pesar de no ser estrictamente correcta, se aplica normalmente con éxito en
muchos trabajos que utilizan estos enfoques (Pearl 1988) y, en concreto, en la construcción
incremental de mapas de ocupación del entorno (Moravec 1998; Thrun 1998).
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2.5.2 Actualización de la probabilidad a posteriori

Se utiliza la regla de Bayes para calcular la probabilidad a posteriori

p(xt | z1, . . . , zt ,a1, . . . ,at−1) =
αp(zt | xt , z1, . . . , zt−1,a1, . . . ,at−1)p(xt | z1, . . . , zt−1,a1, . . . ,at−1) (2.6)

Esto es, la probabilidad a posteriori puede expresarse como la verosimilitud de la última
lectura, ponderada por la función de probabilidad a priori de la posición del robot.

La verosimilitud de la última lectura depende únicamente de la posición actual del robot

p(zt | xt , z1, . . . , zt−1,a1, . . . ,at−1) = p(zt | xt ). (2.7)

Este término se denomina normalmentemodelo de observacióno modelo del sensor.
Hay que hacer notar que en la expresión de probabilidad hay implícita una variable que define
el mapa del entorno, ya que las observaciones dependen tanto de la posición del robot como
del entorno en el que éste evoluciona. Esta variable se hace explícita en aquellos enfoques
que pretenden realizar una estimación del mapa del entorno a partir de las lecturas realizadas
por el robot (Thrun 1998; Koenig y Simmons 1996), tal y como haremos en la sección 2.6,
utilizándose entonces la expresión

p(zt | xt , φ),

dondeφ es la variable que define el modelo del entorno.
El segundo término de la ecuación 2.6 describe la estimación a priori de la localización

xt inmediatamentedespuésde la acciónat−1 y antesde realizar la observaciónzt . El modelo
dinámico (ecuación 2.2) permite expresar esta densidad como

p(xt | z1, . . . , zt−1,a1, . . . ,at−1) =∫
xt−1

p(xt | xt−1,at−1)p(xt−1 | z1, . . . , zt−1,a1, . . . ,at−2). (2.8)

Si observamos el último término de la ecuación anterior,

p(xt−1 | z1, . . . , zt−1,a1, . . . ,at−2)

podremos comprobar que representa la estimación a posterior anterior, por lo que podremos
formular la ecuación 2.6 como
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p(xt ) = αp(zt | xt )
∫

xt−1

p(xt | xt−1,at−1)p(xt−1), (2.9)

que proporciona una expresión recursiva de la estimación a posteriori de la localización
del robot. El factorα es un factor de normalización que asegura que

∫
xt
p(xt ) = 1.

La expresión anterior es una expresión genérica que se aplica a cualquier implementación
concreta de la localización bayesiana, obtenida mediante la definición de un modelo de
observación y de movimiento específicos.

Pero, sobre todo, lo que distingue los distintos enfoques de localización bayesiana es el
método escogido para estimar computacionalmente la función de densidad anterior. Revi-
samos en el siguiente apartado los métodos más utilizados hasta el momento.

2.5.3 Estimación de la función de densidad a posteriori

En la sección anterior se ha derivado la expresión matemática de la función de densidad a
posteriori. Revisaremos en esta sección las distintas técnicas propuestas para su estimación
computacional.

Entre las más extendidas se incluyen: (1) la suposición de quep(x) es una función
normal y la estimación de sus parámetros (mediante el filtro de Kalman, (2) la discretiza-
ción del espacio de la variable aleatoriax (métodos basados en la estimación de rejillas de
probabilidad) y (3) la consideración de quex toma valores discretos (métodos topológicos).

Frente a estos enfoques proponemos en la tesis la utilización defiltros de partículasque
representan la función de densidad mediante un conjunto de muestras.

La localización bayesiana mediante el filtro de Kalman ya ha sido comentada previa-
mente. Revisamos a continuación los enfoques de rejillas de probabilidad y de métodos
topológicos. En el capítulo 5 presentaremos nuestra propuesta de estimación bayesiana
mediante un filtro de partículas.

Rejillas de probabilidad

Frente a la propuesta anterior, las rejillas de probabilidad (Burgard, Fox, Henning, y Schmidt
1996; Thrun, Burgard, y Fox 1998) permiten representar y actualizar funciones de proba-
bilidad arbitraria. Para ello discretizan con una resolución fina todo el espacio de posibles
localizacionesx del robot y formulan las funciones de densidad de la ecuación 2.9 como
funciones constantes en los intervalos correspondientes a la discretización. De esta forma, la
actualización de la función de densidad se completa iterando por todos los posibles valores
discretos.

Es interesante recoger aquí el proceso de actualización de la función de densidad a
posteriori, dada la similitud que tendrá el mismo con el método basado en muestreo que
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propondremos más adelante. La formulación está basada en los trabajos de Burgard (Burgard,
Fox, Henning, y Schmidt 1996; Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner,
y Thrun 1998) y aparece, en forma de algoritmo, en la tabla 2.1. En el algoritmo, se utiliza la
notaciónP(xi) para referirse a la estimación de la probabilidad para la celdillai del espacio
paramétricoX de posibles configuraciones del robot.

Algoritmo: Localización bayesiana con rejilla de probabilidad

1. Inicialización

Para cada celdillaxi ∈ X

P(xi)← P0(xi)

2. Actualización de la acción a

Para cada celdillaxi ∈ X

P(xi)←
∑
xj

P (xi | xj ,a)P (xj )

3. Actualización de la lectura z

Para cada celdillaxi ∈ X

P(xi) ← P(z | xi)P (xi)
P (xi) ← P(xi)∑

xj P (xj )
(normalización)

4. Saltar a 2.

Tabla 2.1: Algoritmo de localización basado en rejillas de probabilidad.

Los métodos basados en este enfoque han demostrado su potencia en aplicaciones en
robots reales (Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y Thrun 1998;
Koenig y Simmons 1998), pero tienen ciertos problemas, entre los que se pueden citar la
complejidad computacional y la necesidad de definir a priori el tamaño de la discretización
del espacio de parámetros y, por ello, su precisión.
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Métodos topológicos

Los métodos topológicos (Nourbakhsh, Powers, y Birchfeild 1995; Kaelbling, Cassandra,
y Kurien 1996; Koenig y Simmons 1998) definen un espacio discreto de estados para el
robot, distinto del espacio de configuraciones(x, y, θ). Este espacio discreto suele ser de
un grano muy grueso (pasillo,unión,final de pasillo), en contraste con el grano fino usado
en el enfoque anterior. Por ejemplo, Nourbakhsh (Nourbakhsh, Powers, y Birchfeild 1995)
utiliza nodos topológicos que representan pasillos o uniones.

El grano grueso mejora la complejidad computacional del método anterior. Sin embargo,
no se garantiza una localización precisa del robot y se producen con frecuencia errores de
confusión de estados, debidos a la ausencia de información métrica en los nodos.

2.6 Fundamentos del mapeado bayesiano

Al igual que en el apartado de localización bayesiana (sección 2.5), denotamos por(x1, . . . , xT )
la secuencia de variables aleatorias que definen el estado del robot móvil en sucesivos instan-
tes de tiempo. En cada instantet ≤ T el robot ha realizado una observaciónzt y ejecutado
una acciónat . LlamaremosD a la secuencia de observaciones y acciones obtenidas

D = (z1,a1, z2,a2, . . . ,aT−1, zT ). (2.10)

La utilización de la variableT mayúscula hace notar que el número de observaciones es
constante. El proceso de mapeado se aplica una vez que el robot ha realizado la exploración
del entorno, y ha almacenado las observaciones realizadas. Todas ellas se van a utilizar
para estimar los mejores parámetros que definen el mapa del entorno. Estos parámetros se
representan con una variable aleatoria,φ, cuyos valores dependen del enfoque utilizado.
Por ejemplo, en el trabajo de Thrun (Thrun, Burgard, y Fox 1998),φ es una asignación de
coordenadas cartesianas(x, y) a un conjunto delandmarksque el robot ha ido registrando
mientras navegaba. En la propuesta de Koenig (Koenig y Simmons 1996), se estima la
distancia entre los nodos de un mapa topológico construido a priori. En nuestra propuesta, la
variableφ representa un conjunto de parámetros utilizados en la definición de las coordenadas
de los vértices del modelo poligonal construido a priori.

Siguiendo el enfoque bayesiano, se debe encontrar el mapaφ más probable dada la
secuencia de datos observadaD, esto es, el mapamáximo a posteriori(MAP). Aplicando la
regla de Bayes, el MAP es el valor deφ que cumple

φ∗ = arg max
φ
p(φ |D) =

= arg max
φ
p(D |φ)p(φ). (2.11)
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El términop(D |φ) define laverosimilitudde la secuencia de datos dado el mapaφ, y
el términop(φ) define la probabilidad a priori deφ. En muchos enfoques se supone que
la probabilidad a priori deφ es uniforme. En este caso, podemos simplificar la ecuación
anterior y considerar sólo el términop(D |φ) para encontrar el mapa más probable. El valor
deφ que maximiza este término se denomina valor demáxima verosimilitud(MV)

φ∗ = arg max
φ
p(D |φ). (2.12)

Desarrollando el término de verosimilitud de la ecuación anterior, podemos incorporar
en el mismo la secuencia de posiciones(x1, . . . , xT ) en las que se ha encontrado el robot
en los sucesivos instantes de tiempo. Estas variables se denominanvariables ocultasen la
terminología de los Modelos Ocultos de Markov (Hidden Markov Models, HMM) ya que
el observador no tiene acceso directo a ellas (consultar (Rabiner y Juang 1986) para una
revisión sobre los HMM y algoritmos asociados).

Si se conocieran estas posiciones, podríamos expresar el estimador de máxima verosi-
militud como

φ∗ = arg max
φ
p(D, x1, . . . , xT |φ). (2.13)

Aplicando la definición de la probabilidad condicional, se llega a la siguiente expresión
de la función de densidad en la ecuación 2.13

p(D, x1, . . . , xT |φ) = p(D | x1, . . . , xT , φ)p(x1, . . . , xT |D), (2.14)

Dado que la observaciónzt depende únicamente del mapaφ y de la posición del robot
en el instantet , xt , y suponiendo independencia entre las observaciones, el primer término
de la ecuación anterior puede reescribirse como

p(D | x1, . . . , xT , φ) =
T∏
t=1

p(zt | xt , φ). (2.15)

La localización del robot en el instantet , xt , depende únicamente de su localización en
el instantet − 1, xt−1, y de la acciónat realizada por el robot en ese instante,

p(x1, . . . , xT |D) = p(x1)

T∏
t=2

p(xt | xt−1,at−1). (2.16)

El términop(x1) determina la distribución a priori de la localización del robot en el
primer instante de tiempo.
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Sustituyendo las ecuaciones 2.15 y 2.16 en la ecuación principal 2.13 se llega a la
formulación final del mapa de máxima verosimilitud

φ∗ = arg max
φ
p(D, x1, . . . , xT |φ) =

= arg max
φ
p(x1)

T∏
t=1

p(zt | xt , φ)
T∏
t=2

p(xt | xt−1,at−1). (2.17)

La expresión final, al igual que la expresión que determina la localización (2.9), depende
únicamente del modelo de observación,p(zi | xi , φ), y del modelo dinámico del robot,
p(xi | xi−1,ai−1).

El problema fundamental de la expresión 2.17 es que no se conoce el valor de las posi-
ciones(x1, . . . , xT ). Una solución, claramente ineficiente, sería integrar todos los posibles
valores de estas variables, de forma que se calculara

arg max
φ

∫
x1

. . .

∫
xT

p(x1)

T∏
t=1

p(zt | xt , φ)
T∏
t=2

p(xt | xt−1,at−1). (2.18)

Existe, afortunadamente, una técnica que realiza un descenso por gradiente en el espacio
de verosimilitud: el método EM (Dempster, Laird, y Rubin 1977), que, en el contexto de los
HMM se denomina algoritmo Baum-Welch (Rabiner y Juang 1986) (para aplicaciones del
EM en el contexto del mapeado, consultar (Koenig y Simmons 1996; Shatkay y Kaelbling
1997; Thrun, Burgard, y Fox 1998)). Un algoritmo EM realiza un descenso por gradiente
en el espacio de verosimilitud alternando dos pasos, unpaso de estimación(expection)
(paso E) y unpaso de maximización(paso M). En el paso E, se estiman los valores más
probables de las localizaciones del robot basándose en el mejor valor del mapa obtenido
hasta el momento (en la primera iteración no hay ninguno). En el paso M se estima un
mapa de máxima verosimilitud a partir de las localizaciones estimadas en el paso E. El paso
E puede interpretarse como un procedimiento de localización dado un mapa fijo, mientras
que el paso M implementa un proceso de mapeado bajo la suposición de que la localización
del robot es conocida. La aplicación iterativa de ambos pasos conduce a un refinamiento
sucesivo tanto de las posiciones estimadas como del mapa.

Un algoritmo EM de mapeado debe proporcionar implementaciones del paso E y del paso
M. Dependiendo del modelo del entorno y de las funciones de densidad, será más o menos
directo implementar ambos pasos. En nuestro caso, al serφ un modelo paramétrico, y la
función de verosimilitud una función multimodal no representable mediante una distribución
normal, no es posible llegar a una solución cerrada de ninguno de los pasos. En el capítulo
7 proponemos un algoritmo estocástico que sigue la filosofía del EM para buscar el mapa de
máxima verosimilitud.
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2.7 Discusión

Se han presentado en este capítulo los problemas de la localización y el mapeado, que
constituyen los problemas centrales de la tesis. Se han revisado los distintos enfoques
y propuestas existentes en la literatura para tratar ambas cuestiones, haciendo un énfasis
especial en los distintos modelos de entorno, en las propuestas de localización global y local
y en los enfoques para resolver el problema del mapeado.

Se presenta una formalización de ambos problemas utilizando la teoría de estimación
bayesiana. Esta formalización unifica las propuestas existentes y proporciona un marco
general en el que se pueden formular muchas de las técnicas propuestas.



Capítulo 3

Un modelo estocástico del sonar

Un buen modelo del sonar proporciona una estimación correcta de las lecturas reales que
el sensor realizaría dado un entorno conocido. Esta estimación nos va a permitir formular
una función de verosimilitud, con la que, dado un modelo del entorno, unos datos leídos y
una posición del robot, sea posible determinar la probabilidad de que los datos hayan sido
realmente percibidos en ese entorno y en esa posición.

La función de verosimilitud de las lecturas del sonar será el elemento clave de los
algoritmos de localización y mapeado.

3.1 Introducción

La palabra sonar deriva del inglésSOund NAvigation and Ranging, y se suele utilizar para
denominar dispositivos que detectan y localizan objetos submarinos mediante la emisión
de ondas de sonido y el cálculo del tiempo de recepción del eco rebotado. Por extensión,
reciben el mismo nombre lossensores de distanciade uso en robots móviles, basados en la
emisión de pulsos de ultrasonidos y en la medición de la distancia de los obstáculos por el
tiempo de recepción del eco.

A pesar del alto nivel de ruido existente en sus lecturas, los sonares se han convertido en
el sensor de distancia típico de los robots móviles. Se ha utilizado el sonar, por ejemplo, para
detectar obstáculos (Arkin 1989; Borenstein y Korem 1991), construir mapas de ocupación
del entorno (Elfes 1989) o localizar la posición del robot en un entorno previamente conocido
(Drumheller 1987).

El alto nivel de incertidumbre de las lecturas del sonar aconseja tratarlas mediante alguna
técnica basada en modelos probabilísticos bayesianos (Fukunaga 1990) (incluyendo elfiltro
de Kalmany sus variantes (Dean y Wellman 1991)). De hecho, este tipo de enfoques se han
aplicado al sonar desde los comienzos de la investigación en robótica móvil (Moravec y Elfes

47
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1985; Matthies y Elfes 1988), aunque es en la actualidad cuando comienza a reconocerse
plenamente su utilidad (Koenig y Simmons 1998; Fox, Burgard, Thrun, y Cremers 1998b;
Thrun 1998).

En los enfoques bayesianos, como el propuesto en esta tesis, tiene una importancia
fundamental realizar un cálculo correcto de la verosimilitud, y para ello es indispensable un
buen modelo del sensor.

Este trabajo propone una función multimodal de verosimilitud de un sonar genérico
basada en un modelo novedoso y realista del sensor que incorpora características no con-
templadas hasta el momento. El modelo parte de la formulación de Barshan (Barshan y Kuc
1990), a la que añadimos la utilización de una técnica equivalente al trazado de rayos (Watt y
Watt 1992) para simular todas las posibles trayectorias de los haces de ultrasonidos emitidos
por el transductor. De esta forma es posible simular lecturas que, hasta el momento, eran
despreciadas como errores del sonar y, sin embargo, pueden ser modeladas correctamente
mediantedobles rebotes.

Todas las medidas y experimentos presentado en este trabajo han sido realizados con el
anillo de 24 sonares de PIXIE (ver figura 3.1).

(a) (b)

Figura 3.1: PIXIE, robot móvil RWI B-21 con el que se ha realizado la experimentación:
(a) fotografía, (b) esquema mostrando sus elementos.

En el apartado 2 describiremos las características principales de los transductores de
ultrasonidos, presentando datos reales del anillo de sonares. En el apartado 3 se propone
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un modelo empírico de interacción entre un haz de ultrasonidos y el entorno. Este modelo
se utiliza como base del algoritmo de trazado de rayos especificado en el apartado 4. En
este apartado también se detallan los distintos parámetros que permiten ajustar el modelo
a las lecturas reales, y se estudian los resultados obtenidos por el algoritmo de simulación,
examinándose cómo varían dichos resultados en función de los valores dados a parámetros
del modelo. Por último se comparan dichos resultados con lecturas reales y se realiza el
ajuste de los parámetros a los datos reales. En el último apartado se formula la verosimilitud
multimodal de las lecturas de un sonar y de un anillo basándose en el modelo planteado.

3.2 Características del sonar

Veremos en este apartado las características de los sensores de ultrasonidos Polaroid y ex-
plicaremos el funcionamiento usual de los anillos de sonares usados habitualmente en los
robots móviles. Enumeraremos los distintos problemas inherentes a los sensores de ultraso-
nidos de este tipo y, por último, presentaremos datos experimentales de lecturas realizadas
en distintos entornos y condiciones.

3.2.1 Funcionamiento del transductor de ultrasonidos Polaroid

Un transductor Polaroid (Polaroid Corp. 1984) tiene una forma circular, con un diámetro de
unos 5 cm. Una fotografía de un sensor de este tipo aparece en la figura 3.2.

Figura 3.2: Fotografía de uno de los transductores Polaroid con los que se ha realizado la
experimentación.

El transductor actúa como emisor y como receptor de señales de ultrasonidos. En su
funcionamiento como emisor, envía frontalmente un breve tren de pulsos de ultrasonidos de
unos 50 kHz. con el perfil de intensidad que aparece en la figura 3.3. Este perfil determina
un haz principal de sonido en forma de cono con una extensión angular de unos 15◦ a ambos
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lados del eje central en el que está orientado el transductor. A mayor distancia angular la
intensidad del sonido decae exponencialmente.

Figura 3.3: Patrón de intensidad de emisión de ultrasonidos (en dB) en función de la distancia
angular al eje de orientación del transductor.

La duración del tren de ultrasonidos suele ser de alrededor de 1 ms. Después de haber
emitido los pulsos, el sensor pasa a modo receptor, esperando los ecos procedentes de los
obstáculos. Un amplificador va aumentando de forma calculada su ganancia para eliminar
el efecto de atenuación del sonido con la distancia. Los ecos recibidos (ver figura 3.4)
se filtran mediante un sencillo algoritmo de umbralización, y aquellos que sobrepasen el
umbral de intensidad especificado se interpretan como ecos procedentes de un obstáculo.
Tanto el umbral de intensidad como la ganancia se modifican manualmente en el proceso de
calibración del sensor. Debido a ello es bastante probable que existan variaciones importantes
en las lecturas proporcionadas por distintos sonares.

Figura 3.4: Eco de un pulso de ultrasonidos con múltiples reflexiones.

Una vez detectado un eco se calcula la distancia al objeto que lo ha producido mediante el
tiempo transcurrido (TOF – TimeOf Flight–) desde la emisión del pulso hasta la recepción
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del eco. En la figura 3.4 esto sucede, para el primer obstáculo, en el instante marcado como
t0. A partir del TOF se obtiene, mediante la siguiente fórmula, la distanciaR0 a la que está
situada el obstáculo.

R0 = ct0

2
, (3.1)

dondec es la velocidad del sonido en el aire1.
El sensor puede funcionar detectando el obstáculo más cercano o bien puede devolver los

TOF de las lecturas que superan el umbral en un determinado intervalo de tiempo después
de emitido el pulso. Todos los experimentos se han realizado con el sensor funcionando en
el primer modo. Si, después de un intervalo de tiempo predefinido, no se detecta ningún
eco, el sensor devuelve un valor máximo arbitrario.

3.2.2 Errores de medida en las lecturas del sensor de ultrasonidos

En muchas ocasiones las lecturas realizadas por un sensor de ultrasonidos contienen erro-
res debido fundamentalmente a dos factores: la extensión angular del haz de sonido y la
inclinación de los obstáculos frente al sensor.

Estos dos factores producen tres tipos fundamentales de errores, que enumeramos a
continuación.

1. No recepción del eco por un ángulo de incidencia demasiado grande.

Como se representa en la figura 3.5 (a), un obstáculo demasiado inclinado con respecto
al eje principal del sensor hace que el eco del pulso de sonido se pierda y no sea
recogido por el transductor. Las inclinaciones a partir de las que este error comienza
a producirse dependen principalmente de la extensión angular del haz. Cuando se
produce este error, el sensor detecta un espacio vacío frente a él.

2. Incertidumbre de la distancia debido a la extensión angular del haz.

Cuando el ángulo entre el transductor y el obstáculo no es tan grande como para que
se produzca el error anterior, se produce otro error de medición debido a que el eco
devuelto por el obstáculo no es el procedente de la zona central del cono de sonido,
sino de una zona periférica del mismo. En la figura 3.5 (b), se puede observar que
el primer eco que llega al transductor es el procedente del lado izquierdo del haz,
realizándose una medida de la pared menor de la existente en realidad.

3. Dobles rebotes.

1340 m/s.
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(a) (b)

(c)

Medición

M
ed
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Error
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r

Figura 3.5: Tres tipos de errores de medición del sensor del sensor de ultrasonidos. En (a)
el eco no se recibe debido a que rebota alejándose del transductor. En (b) se realiza una
medida menor de la que existe en realidad debido a la extensión angular del haz de sonido.
En (c) se realiza una medida mayor de la que existe en realidad debido a la recepción de un
doble rebote producido por una esquina.

En el caso de la primera situación, en la que el eco es reflejado fuera del transductor,
si la onda de sonido reflejada incide en otro obstáculo, es posible que éste refleje a su
vez el sonido en la dirección del transductor. Este es el caso denominado como de
undoble rebotey sucede principalmente en lecturas realizadas en configuraciones de
esquina (ver figura 3.5 (c)). En este caso la lectura devuelta por el sensor es mayor
que la existente en la realidad.

Estos errores de medición no se producen aleatoriamente, sino que se deben a factores
que pueden ser cuantificados y modelados (extensión angular del haz, ángulo entre el eje del
transductor y el obstáculo frente al transductor y disposición de los obstáculos en el entorno).
En las secciones siguientes veremos cómo realizar esta modelización.
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3.2.3 Anillo de sonares

Debido a la baja resolución de los sonares, lo normal es que no se utilicen individualmente,
sino agrupados en ciertas disposiciones típicas. La más habitual de ellas, sobre todo para
robots móviles circulares, es la de anillo con 12 o 24 sonares. Un anillo de 24 sonares
determina que cada uno de ellos va a vigilar una zona angular de 15◦. Esto es consistente
con la resolución de los sensores y garantiza que todo el espacio alrededor del robot estará
cubierto.

Un primer problema de los anillos de sonares es la posible existencia de lecturas cruzadas
(crosstalksen inglés) entre sonares cercanos. Esto es, si disparamos dos transductores
cercanos simultáneamente, es posible que los pulsos de sonido de uno de ellos activen el
otro. Una manera de evitar loscrosstalksconsiste en activar los sensores en grupos de 4
unidades situadas en posiciones opuestas. De esta forma, después de 6 lecturas se habrá
realizado una lectura completa de todo el anillo de 24 sonares. Todo el proceso dura unos
250 ms., dando tiempo a completar hasta 4 lecturas cada segundo. Es posible registrar de
forma independiente el instante de tiempo en el que se ha realizado la lectura de cada uno
de los sensores, lo que será de gran utilidad cuando se utilicen estas lecturas para realizar un
seguimiento de la posición real del robot en movimiento, o de las características del entorno
frente a él.

Existen enfoques mucho más sofisticados para temporizar las lecturas de los transduc-
tores de un anillo de sonares, como el propuesto por Borenstein y Koren en (Borenstein y
Korem 1995). Con este método se consigue mejorar la velocidad de las lecturas entre 5 y 10
veces con respecto al método presentado previamente. Sin embargo, para la experimenta-
ción y para las aplicaciones que presentaremos, no hemos necesitado aumentar la velocidad
de lectura del anillo.

Otro importante problema de los anillos, que no suele citarse en la literatura, es el pro-
blema de la distinta calibración de los sonares que lo componen. Es muy difícil ajustar todos
los potenciómetros de todos los transductores para que proporcionen las mismas lecturas.
En el siguiente apartado presentamos algunas lecturas realizadas por distintos sonares de un
mismo anillo que evidencian el problema. La solución que proponemos pasa por considerar
cada uno de los sonares de forma independiente, ajustando el modelo de sensor a cada uno
de ellos.

3.2.4 Experimentación

Todos los resultados presentados en esta sección han sido obtenidos a partir de lecturas del
anillo de sonares del robot móvil mencionado en la introducción.

En la figura 3.6 se muestran 130 lecturas de un mismo sonar del anillo obtenidas mediante
un giro de 360◦ del robot.
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La interpretación de las lecturas de la figura anterior se realiza en la figura 3.7, en donde
se puede comprobar los errores ya mencionados propios de los sensores de ultrasonidos. Se
han redondeado las lecturas producidas por dobles rebotes.

En la figura 3.8 se muestran las lecturas de distancia obtenidas por el anillo de sonares
con el robot moviéndose a lo largo de un pasillo.

Por último, en la figura 3.9 se puede observar el problema de la calibración del anillo. Se
puede comprobar que las lecturas tomadas por dos sonares distintos en diferentes posiciones
de la habitación son bastante dispares, sobre todo en aquellos casos en las que el ángulo
entre el sonar y el obstáculo es bastante pronunciado.

Lectura
No lectura

Figura 3.6: 130 lecturas de un sonar del anillo con el robot girando a una velocidad de 5◦/s.
Se dibujan como rectas aquellas lecturas que no detectan ningún obstáculo.
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Dobles rebotes
Obstáculo no modelado

Dobles rebotes

Lectura
No lectura

Habitación

Figura 3.7: Representación de las lecturas de la figura 3.6 sobre la habitación en la que se
realizó el experimento.
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Figura 3.8: Lecturas del anillo de sonares de PIXIE obtenidas con el robot moviéndose a lo
largo de un pasillo de 26 metros de largo y 1.6 metros de ancho.
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Sonar 15 Sonar 18

Robot
a la derecha

Robot
en el centro

Robot
a la izquierda

Habitación

Lectura
No lectura

Figura 3.9: Lecturas de los sonares 15 (izquierda) y 18 (derecha) del anillo, con el robot
situado en distintas posiciones (de arriba a abajo) de un recinto.
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3.3 Modelo de interacción del sensor de ultrasonidos

Kuc (Kuc y Siegel 1987) formula, basándose en conceptos de acústica y teoría de sistemas
lineales, un modelo físico que simula la interacción de las ondas del pulso de ultrasoni-
dos con planos y esquinas del entorno. Los resultados son correctos, pero la complejidad
computacional del modelo es muy grande.

En la propuesta de Barshan (Barshan y Kuc 1990), de amplia aceptación en la actualidad
(Henderson, Bruderlin, Dekhil, Schenkat, y Veigel 1996; Ko, Kim, y Chung 1996; Ayrulu,
Barshan, y Utete 1997), se simplifican las ecuaciones anteriores, desarrollándose expresiones
analíticas más sencillas y eficientes de computar. Leonard (Leonard y Durrant-Whyte 1992)
adapta el modelo de Barshan a diferentes tipos de obstáculos, como son planos, esquinas,
aristas y cilindros. El modelo simula el sonar frente a un obstáculo plano, modelando
correctamente los problemas de no recepción del eco y de incertidumbre en la distancia,
pero dejando sin tratar los efectos de los dobles rebotes. Todos estos modelos tienen un
carácter local ya que descomponen el entorno en el que se realiza la simulación en elementos
individuales y modelan el comportamiento del sonar con cada uno de los elementos (ver figura
3.10).

Arista

Esquina Esquina

Arista

Segmento

Arista

Arista

(a) (b)

Segmento

Segmento

Segmento

Segmento

Figura 3.10: Los modelos del sonar de Barshan (Barshan y Kuc 1990) o Leonard (Leonard
y Durrant-Whyte 1992) descomponen un entorno (a) en elementos individuales (b) (aris-
tas,esquinas y segmentos) y simulan la interacción del sonar con cada uno de los elementos.

Frente a estos modelos locales existen propuestas globales, procedentes del campo de la
acústica, que simulan correctamente el comportamiento del sonido en una sala. En particular,
se ha propuesto con éxito la utilización del trazado de rayos (ray-tracing) (Watt y Watt 1992)
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y de variantes suyas como elcone tracingy el pyramid tracingpara resolver el problema
de los rebotes indirectos de los ecos con el entorno (Ondet y Babry 1989; Stephenson 1990;
Vian y van Maercke 1986).

Formulamos en este apartado una extensión del modelo de Barshan que, con una imple-
mentación eficiente, contempla los rebotes de los ecos con el entorno mediante una variante
del algoritmo básico del trazado de rayos.

3.3.1 Modelo físico del sensor de ultrasonidos

Cuando el sonar emite un pulso de sonido, éste se comporta como un haz con forma de
cono centrado en el transductor y que tiene como eje de simetría la línea perpendicular a
la superficie del sonar. Experimentalmente se comprueba que la amplitud de la presión del
sonido en un puntop situado en el extremo del cono varía de forma exponencial en función
del ángulo4θ entre la perpendicular al sonar y la recta que va del centro del sonar ap,
formando el típico lóbulo emisor del sonar (figura 3.11).

Figura 3.11: Representación de la ecuacióne(−24θ2/θ2
0 ) que define la amplitud del haz de

ultrasonidos emitido por un transductor en función de la desviación con respecto a la normal
del propio transductor.

La presión máxima se obtiene cuandop está situado justo en la perpendicular del sonar
y disminuye de forma exponencial conforme aumenta4θ . La ecuación

a(4θ) = amaxe
(−24θ2/θ2

0 ) (3.2)

modela esta presión, siendoamax, la amplitud máxima observada. Esta ecuación representa
una distribución normal con una desviación estándar igual aθ0/2, siendoθ0 una constante que
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(a) (b)

Figura 3.12: (a) Un par de transductores enfrentados. (b) Un transductor enfrentado a una
pared con una inclinación4θ .

depende del tipo de emisión del pulso de sonido y que denominamos constante de dispersión
del haz.

Para un par de transductores idénticos, uno actuando como emisor y el otro como receptor,
la amplitud de la señal detectada se computa multiplicando las dos presiones del pulso:

a(4θ,4η) = amaxe
(−24θ2/θ2

0 )e(−24η2/η2
0), (3.3)

siendo4θ y4η los ángulos de inclinación del transductor emisor y receptor respectivamente
(ver figura 3.12 (a)), yamaxla amplitud máxima observada, esto es, cuando los transductores
están enfrentados directamente y4θ = 4η = 0.

En el modelo propuesto por Barashan y Kuc se supone que el entorno está formado por
paredes planas que actúan como reflectores especulares del sonido. El transductor actúa
al mismo tiempo como emisor y como receptor. Se deriva la siguiente expresión para la
amplitud de la señal recibida por el transductor

a(4θ) = amaxe
(−44θ2/θ2

0 ), (3.4)

siendo4θ el ángulo formado por la normal al transductor y la normal al plano de la pared
(ver figura 3.12 (b)).

La mayoría de los sonares no proporcionan la amplitud de la señal recibida, sino el TOF
del primer rebote. Este se obtiene umbralizando la señal, de forma que se considera que se
ha recibido un reflejo de la señal cuando la amplitud recibida supera un determinado umbral
a0. De esta forma, sustituyendoa0 en la ecuación 3.4, consideramos que un obstáculo se
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detecta correctamente cuando el ángulo4θ que forman la normal al transductor y la normal
al plano del obstáculo es menor que un umbral de sensibilidad4θd , donde

4θd = θ0
√− ln(a0/amax)

2
(3.5)

Normalizando la ecuación anterior, considerandoamax = 1, entonces 0< a0 < 1 y la
ecuación anterior queda como sigue

4θd = θ0
√− ln(a0)

2
, (3.6)

con lo que el sector angular de sensibilidad del sonar es (ver figura 3.13)

[
−θ0
√− ln(a0)

2
,+θ0

√− ln(a0)

2

]
. (3.7)

d

d

Figura 3.13: Zona de sensibilidad del haz de ultrasonidos.

3.3.2 Extensión del modelo para contemplar múltiples reflexiones

La limitación más importante del modelo anterior es que únicamente contempla la interacción
entre un sonar y un único obstáculo, no considerando el sonido indirecto debido a los reflejos
del mismo entre los propios obstáculos. Lecturas como las que se marcan en la figura 3.14
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(a), no se detectarían como obstáculos con una aplicación directa del modelo de Barshan.
Esto es debido a que el ángulo de la superficie en la que incide directamente el sonar supera
el umbral angular de sensibilidad,4θd . Sin embargo, como se muestra en la figura, el sonar
recibe sonido rebotado por esa superficie. Una interpretación plausible de dichas lectura,
que se utiliza con éxito en las simulaciones de acústica, es que ese sonido ha llegado al sonar
después de varios rebotes con las paredes del entorno, como se muestra en la figura 3.14 (b).

Dobles rebotes

Lectura
No lectura

(a) (b)

Figura 3.14: (a) Lecturas procedentes de dobles rebotes. (b) Trayectorias del sonido que
han producido uno de los dobles rebotes.

A continuación presentamos una extensión del modelo de Barshan que realiza una si-
mulación global del comportamiento del sonar, en la que todos los elementos del entorno
interactúan entre sí, reflejándose en las ondas de sonido.

Amplitud

Cuando un pulso de ultrasonidos rebota en una superficie consideramos que su reflejo sigue el
mismo patrón definido por la ecuación 3.2, sufriendo una atenuación exponencial conforme
el ángulo se aparta del ángulo principal de reflexión. Así, supongamos un rayo puntual
con amplitudai que incide en una superficie. Consideramos que el reflejo de este rayo se
comporta como un haz cuya presión de sonido máxima corresponde al ángulo de reflexión
especular y decae exponencialmente según la ecuación

a(4κ) = aie(−24κ2/κ2
0), (3.8)
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siendo4κ el incremento con respecto al ángulo de reflexión especular (ver figura 3.15),ai
la presión del rayo incidente yκ0 la varianza de la distribución de reflexión, que depende
principalmente del tipo de material del obstáculo.

Figura 3.15: El reflejo de un pulso de sonido incidente en un obstáculo con una amplitud
ai genera un haz reflejado cuya amplitudar decae exponencialmente alrededor del rayo
reflejado ideal según la ecuaciónar = aie(−24κ2/κ2

0), siendo4κ el ángulo de desviación con
respecto al rayo reflejado ideal.

La amplitud del eco percibido por el sonar, en el caso de un haz que rebota enn superfices,
se calcula multiplicando la expresión anterior tantas veces como superficies existan. Al final
la señal rebotada será percibida por el sonar si el último haz rebota en su dirección.

Por ejemplo, en la figura 3.16, vemos un rayo que se emite con un ángulo4θ con
respecto a la normal del transductor, que se refleja con una trayectoria definida por los
ángulos4κ1,4κ2 con respecto a los ángulos de reflexión especular y que incide en el
transductor con ángulo4η.

En general, denotamos por0 la trayectoria seguida por un rayo emitido por el transductor,
con un ángulo de emisión4θ , ángulos de reflexión4κ1, . . . ,4κn y ángulo de incidencia4η.
La amplitud final de un rayo emitido que sigue la trayectoria0 se puede calcular siguiendo
la idea de Barshan de multiplicar las sucesivas disminuciones de la amplitud causadas por
las desviaciones angulares de la trayectoria, lo que nos lleva a la siguiente ecuación.

a(0) = e−2(4θ2/θ2
0+4κ2

1/κ
2
0+...+4κ2

n/κ
2
0+4η2/θ2

0 ). (3.9)
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Figura 3.16: Ejemplo de un rayo de ultrasonidos que se refleja en una superficie con un
ángulo4κ1 con el rayo reflejado ideal y en otra con4κ2.

Normalmente se utilizan amplificadores de ganancia para compensar la pérdida de am-
plitud de la señal debida a la difracción y a laatenuación, por lo que la amplitud del rayo
reflejado puede considerarse independiente de la distancia a la que se encuentra el obstáculo
y, por tanto, este factor no se considera en la ecuación anterior.

TOF

Para obtener el primer TOF del haz debemos encontrar el rayo que realice el recorrido menor,
esto es, el que primero llegue rebotado al transductor, y que cumpla la propiedad de incidir
en el sensor con una amplitud mayor que su umbral de sensibilidad, que hemos denominado
a0. Si llamamosD0 a la distancia recorrida por un rayo que sigue la trayectoria angular
0, entonces la expresión que define el rangoR0 medido por nuestro modelo de sonar es la
siguiente

R0 = arg min
0
D0/2 sujeto aa(0) > a0. (3.10)

Para simularn sensores de un robot móvil consideraremos que son independientes unos
de otros (como de hecho sucede en la realidad) y aplicaremos el modelo en la orientación
definida por cada sensor. Será necesario ajustar en cada caso los parámetros del modelo a
las características particulares de cada uno de los sonares.
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3.4 Simulación del sonar mediante trazado de rayos

La simulación del modelo del sonar se basa en el algoritmo detrazado de rayos(consultar
(Watt y Watt 1992) para una revisión completa), adaptado para incorporar el tratamiento del
TOF.

3.4.1 Trazado de rayos

En la técnica del trazado de rayos, utilizada para construir imágenes sintéticas hiper-realistas,
se lanza un conjunto de rayos, uno por cada uno de los elementos de imagen de la pantalla,
desde el punto de vista desde el que se toma la imagen hacia la escena.

Fuente de luz

Rayo indirecto 
reflejado

Rayo directo

Rayo indirecto
refractado

Plano de imagen

Luz reflejada
al plano de imagenPixel

Figura 3.17: Funcionamiento básico del trazado de rayos. El rayo que llega desde la escena
es una composición de un rayo reflejado ambiental, un rayo reflejado especular y un rayo
refractado.

Para cada rayo se calcula la intersección más cercana con un objeto de la escena y se
computa el color del mismo. Para ello se supone que el color del objeto depende de la luz
recibida por el mismo, calculándose de forma recursiva las tres posibles formas por las que
puede recibir luz el objeto: rayo de luz indirecto reflejado procedente de otro objeto, rayo
de luz indirecto refractado si el objeto tiene algún grado de transparencia y rayo directo
procedente de la fuente de luz (ver figura 3.17).
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Algoritmo TrazadoDeRayos
Entrada: PuntoComienzo, Direccióndel rayo de la pantalla hacia la escena,Profundidad
Salida: Color resultante

Si Profundidad> PROFUNDIDAD_MAXIMA devolver COLOR_NEGRO
Sino

Calcular elObjetoy el Puntodonde intersecta el rayo que va dePuntoComienzoaDirección
Si existeObjetointersectado

ColorLocal := CalcularLuzDirecta(Objeto,Punto)
DirecciónReflejada:= CalcularReflexión(Objeto,Punto)
DirecciónRefractada:= CalcularRefracción(Objeto,Punto)
ColorReflejado:= TrazadoDeRayos(Punto,DirecciónReflejada,Profundidad+1)
ColorRefractado:= TrazadoDeRayos(Punto,DirecciónRefractada,Profundidad+1)
devolver Combinar(Objeto,ColorLocal,ColorReflejado,ColorRefractado)

sino devolverCOLOR_NEGRO

Tabla 3.1: Algoritmo recursivo base del trazado de rayos

Hay que hacer notar que, aunque el fundamento del modelo es el que se ha enunciado
previamente, el trazado de rayos se realiza de atrás hacia adelante, desde el punto de vista
hacia la escena, en vez de hacerlo desde la fuente de luz hacia el punto de vista. Esto es
porque no estamos interesados en todos los rayos emitidos desde la fuente de luz, sino sólo
en un subconjunto reducido de éstos, los que, después de reflejarse en elementos de la escena,
terminan pasando a través del plano de imagen.

La forma de implementar el trazado de los rayos es recursiva, utilizándose una estructura
de árbol binario como soporte lógico. Cada nodo representa una llamada recursiva del
procedimiento general de trazado de rayos, teniendo normalmente una rama producida por
el rayo reflejado y otra por el refractado. Si un rayo intersecta un objeto, éste produce otros
dos rayos, uno reflejado y otro refractado. En ambos se aplica el algoritmo de trazado de
rayos para calcular con qué objetos intersectan y, para cada intersección, volver a dividirlo
en una componente reflejada y otra refractada. El proceso continúa hasta que se llega a un
nivel de recursión predeterminado o hasta que el rayo no intersecta con ningún objeto, en
cuyo caso se le asigna un color de fondo. El color de cada intersección se calcula sumando
la componente de luz ambiental debida a la fuente de luz con las componentes debidas a
los rayos reflejados y refractados. En la tabla 3.1 se encuentra una versión de alto nivel del
algoritmo recursivo del trazado de rayos (adaptado de (Watt y Watt 1992)).

3.4.2 Simulación del sonar

A diferencia del algoritmo del trazado de rayos no se trazarán los rayos hacia atrás, sino de
forma inversa (como en la técnica delbackward raytracing(Glassner 1989)). Esto se debe
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a que en el caso del sonar coinciden la fuente y el sensor de sonido, con lo que es indiferente
trazar los rayos hacia atrás o hacia adelante.

En la figura 3.18 se puede ver un ejemplo de recorrido de los rayos de sonido según el
algoritmo de simulación del sonar.

rref

inr

rref

outr

Figura 3.18: Ejemplo del funcionamiento del algoritmo de simulación del sonar.

El algoritmo de simulación (detallado en la tabla 3.2) funciona como sigue.

• Suponemos que el sonar está orientado en la direcciónθ . En primer lugar se calcula el
umbral de sensibilidad del sonar4θd , y se emite un númeroδ de rayos desdeθ −4θd
hastaθ +4θd . Se recorren todos estos rayos emitidos y se calcula el alcance devuelto
por cada uno de ellos, devolviendo el menor alcance.

• Para calcular el alcance de un rayo emitidorout , primero se determina el punto de
intersecciónp con el entorno y la dirección de reflejo del rayo en ese puntorref . A
continuación se comprueba sirref incide en el sensor de ultrasonidos con amplitud
suficiente. Para ello se traza el rayorin del transductor al puntop y se calcula el
ángulo4κ entrerin y rref , y el ángulo4η entrerin y la orientación del transductor
θ . Una vez calculados estos ángulos ya se puede aplicar la ecuación 3.9 para calcular
la amplitud del sonido entrante en el transductor. Si ésta es mayor que el umbral,
entonces se almacena el rayo y la distancia recorrida en una lista.

• Si la amplitud no es mayor quea0 comprobamos entonces el siguiente reflejo. Se
considera que el pulso se refleja en la dirección del rayo reflejadorref y se calcula
la intersección de éste con el entorno, volviendo a calcular la amplitud del sonido
entrante en el transductor debida al rayo reflejado con el método anterior.
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Algoritmo Alcance de sonar
Entrada: Ángulo θ en el que se realiza la lectura del sonar
Salida: Alcance del sonar en la orientaciónθ
Parámetros: θ0, κ0, a0

SeaListaRayosuna lista vacía
4θd := θ0

√
ln(a0)/2

Seanrout1 . . . routn rayos con orientaciónθi = θ −4θd . . . θ +4θd con incrementoδ
Para cadarout con desviación4θin = θi − θ

InicializarProfundidada 0
Mientras (Profundidad< PROFUNDIDAD_MAXIMA)

Calcularp el punto de intersección derout con el objeto más cercano
Calcularrref el rayo reflejado porrout enp
Calcularrin el rayo del transductor ap
Calcular4κ el ángulo entrerref y rout
Calcular4η el ángulo entre la orientación del transductor yrin
a := e−2(4θ2/θ2

0+4η2/θ2
0+4κ2/κ2

0)

Si a > a0
Calculard distancia recorrida porrout
Añadir (rout , d) aListaRayos

Sino
rout := rref
Profundidad:= Profundidad+1

FinMientras
FinParaCada
Devolver el alcance derout con menor recorridod enListaRayos

Tabla 3.2: Algoritmo de simulación del sonar
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Aquí estamos realizando una importante simplificación para hacer tratable el algorit-
mo. En el modelo del sonar consideramos que el reflejo de un pulso de sonido es un
haz, sin embargo en el algoritmo de simulación esto lo tenemos en cuenta únicamente
a efectos del cálculo del rayo entrante emitido hacia el transductor y no para seguir
trazando rayos reflejados. El único rayo reflejado que se considera es el principal, el
que coincide con la dirección de reflejo.

El trazado del rayo reflejado termina cuando se alcanza un número de rebotes deter-
minado.

• Por último, una vez realizado el trazado de todos los rayos emitidos, se devuelve la
menor distancia recorrida. En el caso en el que ningún rayo haya vuelto al sensor, se
devuelve un valor arbitrario que indica que no hay rebote.

Como ejemplo de funcionamiento, en la figura 3.19 se muestra la simulación del sonar
en un entorno idéntico al recinto en el que se realizaron las mediciones de la figura 3.7.
Como dato curioso se acompaña la figura de las lecturas reales, haciendo notar que no se ha
realizado ningún proceso de ajuste de los parámetros del modelo.

Resaltamos la correcta simulación de los dobles rebotes, como puede comprobarse en la
figura, no conseguida por otros modelos.

Lecturas realesSimulación

Figura 3.19: Resultado, a la izquierda, de la simulación de 130 lecturas de sonar en un
entorno idéntico al recinto en el que se han realizado las mediciones. A la derecha se
muestran los resultados reales de las mediciones. Tanto en la simulación como en los datos
reales aparecen rodeadas las lecturas producto de dobles rebotes.
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3.4.3 Parámetros del modelo y del algoritmo

Si revisamos el algoritmo y el modelo del sensor, comprobaremos que existen tres parámetros
de cuyo valor va a depender el comportamiento del sonar. Se trata deθ0, κ0 y a0. Los dos
primeros determinan, respectivamente, la extensión angular del haz emitido por el sonar y
del haz de sonido reflejado en un obstáculo. Ambos se comportan igual, cuanto mayores
sean, mayor será la extensión angular del haz y mayor sensibilidad (e imprecisión) tendrá el
sonar. El último parámetro determina el umbral del transductor. En la figura 3.20 se muestra
el resultado de simular 130 lecturas de sonar en el mismo entorno con distinto valores de
parámetros.

Hay que hacer notar que, para una lectura con un determinado ángulo, la variación de la
medida no es continua con la variación de los parámetros. Por el contrario, se manifiesta en
la simulación unefecto de escalónque hace que la distancia calculada por un sonar cambie
bruscamente frente a una pequeña modificación de los parámetros.

Para demostrar este efecto, se recogieron los resultados de la simulación de un sonar en
una configuración de esquina, variando los parámetrosθ0 entre 0.05 y 1.5 yκ0 entre 0.05 y
1.5. La representación de los resultados se muestra en la figura 3.21. Como se observa, los
valores medidos por el sonar simulado son, alternativamente, 100, 210 y 350 centímetros,
definiéndose un comportamiento marcadamente multimodal del modelo. Existe también una
combinación de parámetros que hace que el sonar no detecte obstáculos. En la simulación
el alcance máximo del sonar se fijó en 500 cm.

Modificando estos parámetros es posible ajustar la simulación a los valores reales pro-
porcionados por cada uno de los sonares. Debido a que, como ya mencionamos, el compor-
tamiento de los sonares del anillo es muy dispar se deberá realizar un ajuste de parámetros
independiente para cada uno de los sonares. En el siguiente apartado se presenta el proceso
de ajuste y los resultados del mismo.
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= 0.1
= 0.5

= 0.5
= 0.1

= 1.0
= 0.5

= 0.5
= 1.0

= 0.5
= 0.5

Figura 3.20: Resultado de la simulación de 130 lecturas de sonar en el mismo entorno,
variando los valores de los parámetros del algoritmo de simulación.
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Figura 3.21: Variación de la lectura del sensor para un ángulo determinado cuando se varía
θ0 entre 0.05 y 1.5 yκ0 entre 0.05 y 1.5.
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3.4.4 Ajusteoff-line de los parámetros del modelo

Para ajustar el modelo debemos encontrar los valores de sus parámetros que optimizan la
simulación, haciendo que ésta se acerque lo máximo posible a los valores tomados por el
sensor en el mismo entorno.

Formalmente, buscaremos para cada sonar aquellos valores de los parámetros que mini-
micen la siguiente expresión

χ2 =
N∑
i=1

(xi − f (xi, θ0, κ0, a0))
2, (3.11)

siendoN el número de lecturas realizadas para el ajuste,xi los valores de alcance medidos
en las lecturas yf (xi; y) el valor medido por el simulador correspondiente a la lecturai con
los valores de los parámetrosθ0,κ0 y a0.

La ecuación del modelo impide una resolución analítica del ajuste, ya que no es posible
calcular las derivadas de la ecuación 3.10. Además, en el apartado anterior se comprobó que
el comportamiento del modelo tiene forma de función escalón, debido a que las desviaciones
en los parámetros del modelo hacen que una lectura dada varíe entre dos o tres valores muy
distintos (100, 210, 350 cm. yno obstáculo, por ejemplo, en la figura 3.21) sin tomar valores
intermedios. Por ello, tampoco será posible calcular de forma numérica las derivadas de la
ecuación 3.11.

Dado que el número de parámetros es pequeño, hemos optado por realizar una búsqueda
exhaustiva de los valores de los parámetros, variando todos ellos desde 0.0 hasta 1.0. Si el
modelo hubiera tenido un número mayor de parámetros la búsqueda exhaustiva no hubiera
sido eficiente, teniendo que recurrir a métodos estocásticos como elsimulated annealingo
la búsqueda genética.

Los resultados obtenidos para cada uno de los sonares se muestran en la tabla 3.3, y un
ejemplo de dos sonares ajustados se muestra en la figura 3.22.
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sonar 4 real sonar 4 simulado

sonar 19 real sonar 19 simulado

Figura 3.22: Ejemplo del resultado del ajuste de dos sonares, comparando su simulación
con las lecturas reales.
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Sonar θ0 η0 a0 Sonar θ0 η0 a0

0 0.65 0.05 0.00 12 0.50 0.50 0.60
1 0.90 0.50 0.60 13 0.50 0.25 0.40
2 0.85 0.05 0.00 14 0.65 0.95 0.80
3 0.70 0.15 0.20 15 0.85 0.20 0.40
4 0.50 0.25 0.40 16 0.25 0.95 0.20
5 0.75 0.25 0.60 17 0.85 0.05 0.00
6 1.00 0.20 0.40 18 0.80 1.00 0.60
7 0.50 0.35 0.40 19 0.90 0.95 0.60
8 0.80 0.10 0.20 20 0.70 0.15 0.20
9 0.70 0.15 0.20 21 0.80 0.55 0.60
10 0.45 0.85 0.00 22 0.75 0.45 0.60
11 0.70 0.15 0.20 23 0.85 0.80 0.60

Tabla 3.3: Resultados del ajuste de parámetros para los 24 sonares de PIXIE.
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3.5 Modelo estocástico

Una vez detallado el modelo del sonar y el algoritmo que lo simula, pasamos a definir el
cálculo de la función de verosimilitudp(z | x) del sensor. En primer lugar daremos una
formulación para el caso de un único sonar, y a continuación la ampliaremos al caso de un
anillo.

3.5.1 Sonar único

Seax = (o1, . . . , on, x, y, θ) un entorno definido por las características geométricas de los
objetos que lo forman(o1, . . . , on) y por la posición del sonar(x, y), y la orientación del
mismoθ . Seaz= rreal una lectura de distanciarreal realizada por un sonar.

En una primera versión, para calcular la verosimilitud de que la distanciarreal haya
sido producida en el entornox, se aplica en este entorno el modelo del sonar, calculando
la distanciarsim devuelta por un sonar en la posición(x, y) y con la orientaciónθ . La
verosimilitud se calcula entonces como una distribución normal truncada:

p(rreal | o1, . . . , on, x, y, θ) = e−(φ(rreal ,rsim)/2σ2), (3.12)

donde

φ(rreal, rsim) =


(rreal − rsim)2 si rreal < rmax y rsim < rmax
ρ1 si rreal = rmax y rsim = rmax
ρ2 en otro caso

, (3.13)

y ρ1 es una constante cercana a 1 para el caso en el que ambas lecturas devuelvan una lectura
máxima (no existe obstáculo frente al sensor) yρ2 es una constante de penalización para el
caso en que la lectura simulada o la real devuelvan una lectura máxima cuando la otra no lo
hace.

El problema de esta versión inicial es que asume un modelo gaussiano del ruido, cuando
esto no es correcto. Recordemos que pequeñas variaciones de los parámetros del modelo o
de la orientación del sensor producen grandes cambios en el valor devuelto por el sensor (el
efecto de escalónque aparecía en la figura 3.20).

En la versión final de la función de verosimilitud introducimos una componente estocás-
tica en forma de ruido gaussiano añadido a los parámetros del modelo y a laorientación del
sonar. El algoritmo para calcular la verosimilitud es el siguiente

1. Generar las lecturasr1, . . . , rn repitiendo la simulación añadiendo ruido gaussiano a
los parámetros del modelo y a laorientación del sonar.

2. Buscar el valorri más próximo arreal.



3.6. DISCUSIÓN 77

3. Calcular la verosimilitud aplicando la ecuación 3.12 a las lecturasrreal y ri

p(rreal | o1, . . . , on, x, y, θ) = e−(φ(rreal ,ri )/2σ2). (3.14)

Este algoritmo, a diferencia de la primera versión, produce una función de verosimilitud
multimodal, mucho más acorde con las características del sensor de ultrasonidos.

En la figura 3.23 se puede comprobar el resultado de esta formulación. En ella se supone
que el robot y su anillo de sonares se encuentra centrado en la habitación. Se han generado
uniformemente 40000 posicionespi alrededor del robot y se ha supuesto que cada una de
ellas define una lectura realri . La distanciari es la distancia entre la posiciónpi y el robot, y
la orientaciónθi correspondiente a la lectura se define por la orientación de la recta que une
pi con el centro del robot. Una vez definidas cada lectura y cada orientación, se ha calculado
su verosimilitud dado el entorno y la posición del robot, y se ha dibujado la posiciónpi de
la lectura con un tono de gris proporcional a la verosimilitud. De esta forma, cuanto más
oscura aparece una posición, mayor es la verosimilitud de su lectura asociada.

3.5.2 Anillo de sonares

Para calcular la verosimilitud de las lecturas de un anillo aplicamos el modelo anterior a
cada uno de los sonares que lo componen, y calculamos la probabilidad conjunta de todas
las lecturas.

Al ser lecturas independientes, podemos aplicar la siguiente expresión

p(z1, . . . , zn | o1, . . . , on, x, y, θ) =
n∏
i=1

p(zi | o1, . . . , on, x, y, θi), (3.15)

dondeθ es la orientación de referencia del anillo yθi la orientación individual del sonar que
ha producido la lecturazi . Para calcular las lecturas simuladas actualizamos el modelo del
sonar con los parámetros propios del sonar que ha realizado la lectura.

3.6 Discusión

Se ha presentado en esta sección un modelo del sonar realista, que es capaz de simular con
notable fidelidad el comportamiento de los sensores de ultrasonidos, modelándose correc-
tamente lecturas que previamente eran despreciadas como errores. La simulación se basa
en una adaptación del algoritmo detrazado de rayos, con el que se sigue el recorrido de los
haces de ultrasonidos y sus rebotes con el entorno.
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Figura 3.23: Verosimilitud de 40000 posiciones distribuidas uniformemente alrededor del
anillo de sonares. Cuanto más oscura aparece una posición, mayor es la verosimilitud de su
lectura asociada.
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Se ha realizado un ajuste de los parámetros del modelo a partir de mediciones obtenidas
por los sonares de PIXIE, y se han presentado numerosos experimentos que muestran la
corrección de la simulación.

Por último se ha presentado un algoritmo estocástico con el que, variando aleatoriamente
los valores de los parámetros del modelo, se obtiene una función multimodal de verosimilitud
de las lecturas del sensor.
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Capítulo 4

Modelos para la estimación bayesiana

El paradigma de estimación bayesiana para los robots móviles se basa en la definición proba-
bilística de un modelo del entorno, un modelo de observación y un modelo de movimiento.

El tipo de modelo del entorno (topológico o métrico) influye directamente en la formu-
lación del modelo de observación, así como en el tratamiento del problema del mapeado. El
uso de modelos métricos parametrizables, como los que definimos en este capítulo, permite
estimar posiciones absolutas del robot, así como buscar, mediante algoritmos de mapeado,
los parámetros del mapa que mejor explican una secuencia de movimientos y observaciones
del robot.

El modelo de observación de las lecturas de sonares de un robot permite evaluar la
probabilidad (verosimilitud) de que unas lecturas se hayan realizado en una determinada
posición del entorno. Para que un modelo de observación se ajuste a la realidad hay que
considerar una cierta probabilidad de que las lecturas hayan sido producidas por obstáculos
o características no modeladas del entorno.

Por último, el modelo de movimiento evalúa la probabilidad de que el robot se encuentre
en una posición nueva, dada la posición anterior del mismo y la acción (estimada a partir de
la lectura de odometría) realizada.

La calidad de los modelos de observación y de movimiento es la clave de una estimación
bayesiana robusta y fiable.

4.1 Mapas del entorno

Un modelo métrico de mapa de entorno permite que los algoritmos de localización deter-
minen la posición absoluta (coordenadax, y y orientaciónθ ) del robot, frente a un modelo
topológico en donde la localización no es tan exacta (robot en pasillo, robot al final del
pasillo, etc.).

81
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(0,0)

(0,1000) (500,1000)
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(550,500)
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(1000,250)(250,250)

(250,0)

Figura 4.1: Ejemplos de mapas poligonales.

En el capítulo 2 revisamos los distintos modelos de entorno utilizados en la literatura. El
modelo que proponemos se acerca a los modelos CAD utilizados por Burgard (Burgard, Fox,
Henning, y Schmidt 1996; Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y
Thrun 1998), aunque formalizamos su definición utilizando regiones poligonales, que van a
permitir construir modelos paramétricos del entorno.

Un mapa del entorno se define mediante una región poligonal (polígono simple cerrado)
cuyos vértices(p1, p2, . . . , pn) representan coordenadas en el plano (pi = (x, y)). Las aris-
tas(a1 = p1p2, a2 = p2p3, . . . , an = pnp1) representan los límites de la región poligonal y
están etiquetadas con ABIERTO o CERRADO, dependiendo de si definen una zona abierta
o cerrada (pared). Algunos ejemplos de mapas del entorno se muestran en la figura 4.1.

Las coordenadas de los vértices pueden utilizar un conjuntoφ = (d1, . . . , dn) de pará-
metros para definir modelos genéricos paramétricos. Por ejemplo, en la figura 4.2 se define
un modelo con tres parámetros que permite modelar desde un final de pasillo hasta una
esquina.

La definición paramétrica de los modelos del entorno permite formular el problema del
mapeado como un problema de estimación de parámetros. La utilización de estos parámetros
para definir las posiciones de los vertices proporciona libertad suficiente para definir un
amplio conjunto de modelos y para introducir restriccionesad-hocque acoten la búsqueda.
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(0,0)

(0,1000) (d1+d2,1000)

(d1+d2,1000-d2)

(d1,1000-d2)

(d1,0)

d1

d2

d3

Figura 4.2: Ejemplo de mapa poligonal definido mediante los parámetrosd1, d2 y d3.

4.2 Modelo de observación

Un modelo de observación proporciona una estimación de la función de densidadp(z | x, φ).
Recordemos que en el enfoque bayesiano esta función de densidad mide la verosimilitud de
que unas medidasz= (z1, . . . , zn) hayan sido producidas en una configuraciónx del modelo
que se está estimando definido por los parámetrosφ. En nuestro caso(z1, . . . , zn) son las
lecturas tomadas por un barrido del anillo de sonares del robot móvil,x son las posiciones
del robot en el modelo del entorno yφ son los parámetros que definen el mismo.

En adelante supondremos un modelo fijo de entorno, por lo que utilizaremosp(z | x) en
lugar dep(z | x, φ).

Un buen modelo de observación debe adecuarse lo más posible a las probabilidades reales
dep(z | x). Sería ideal construir este modelo a partir de datos estadísticos de las lecturas
reales del anillo en diferentes configuraciones del entorno. Sin embargo, el alto número de
configuraciones posibles (todas las posiciones del robot en todos los posibles modelos de
entorno) y la alta variabilidad de las lecturas hacen, en principio, que este enfoque no sea
factible.

Usaremos el modelo del sensor formulado en el capítulo 3 como base de construcción
de la función de verosimilitud. Dada una posición del robot en el entorno, podemos ob-
tener lecturas simuladas de los sonares y compararlas con las lecturas reales, dando más
verosimilitud a las reales cuanto más se parezcan a las simuladas.
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Para simplificar la formulación supongamos que deseamos estimar la verosimilitud de
una única lecturazi obtenida desde la posiciónx. Formalmente, el modelo del sensor define
una función de probabilidad para las lecturasp̂(z | x), a partir de la que formulamos la
verosimilitud dezi comop̂(zi | x). Al ser p̂ una función de probabilidad sin una fórmula
analítica, no es posible evaluar esta verosimilitud directamente. Si embargo, es posible
muestrearp̂, aplicando los algoritmos de simulación del modelo del sonar y generarM

lecturas simuladasl1(x), . . . , lM(x). Utilizamos, entonces, estas lecturas simuladas para
representar̂p como una suma de distribuciones normales centradas en cada una de estas
lecturas resultantes. De esta forma, es posible calcularp̂(zi | x)a partir de estas distribuciones
normales. Recordemos que el modelo del sensor ha sido ajustado mediante lecturas reales,
por lo que podemos afirmar que la función de verosimilitud se estima, de forma indirecta, a
partir de datos reales.

El modelo de observación que se formula en esta sección contempla además la posibilidad
de que algunas lecturas hayan sido causadas por obstáculos no modelados.

En los siguientes apartados se formula de forma general la función de probabilidad
condicional, considerando las dependencias entre variables aleatorias. Después se concreta
el modelo de observación, definiendo cada una de las distribuciones que intervienen en su
formulación. Por último se proporcionan ejemplos y resultados del modelo definido.

4.2.1 Formulación general

Las lecturasz = (z1, . . . , zn) son lecturas contiguas de un anillo circular de sonares (las
lecturaszi y zi+1 son contiguas, así como la lecturaz1 y la zn) y todas se realizan en el mismo
instante de tiempot . La orientación asociada a cada lectura de sonarzi la denominamosθi .

Para modelar la posible presencia de obstáculos, se define una variable aleatoria8 =
{o, o} con una probabilidadp(o) = q de presencia de un obstáculo y una probabilidad
p(o) = 1− q de que no exista obstáculo en la dirección de la lectura de sonar que se está
considerando.

De forma general, la verosimilitud del conjunto de lecturas la podemos formular como
p(z1, z2, . . . , zn | x,8), dependiendo del entornox y de la existencia de algún obstáculo8.
Desarrollando la expresión, se obtiene

p(z1, z2, . . . , zn | x,8) =
p(z1 | x,8) · p(z2 | z1, x,8) · . . . · p(zn | z1, z2, . . . , zn−1, x,8). (4.1)

El caso de que no haya obstáculos en el entorno, consideramos que todas las lecturas
son independientes entre sí, dependiendo únicamente de la configuración del entorno

p(zi | zj 6=i , x, o) = p(zi | x). (4.2)
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Sin embargo, las lecturas producidas por obstáculos no las consideramos independientes,
ya que suponemos obstáculos con una cierta extensión angular. Por ello, lecturas cercanas
angularmente tendrán valores similares, ya que van a ser afectadas por el mismo obstáculo.

Esto lo formulamos definiendo un entornoGi de lecturas afectadas por un obstáculo
detectado por la lecturazi , y restringiendo a dicho entorno la dependencia entre las variables

p(zi | zj 6=i , x, o) = p(zi | zj∈Gi , x, o), (4.3)

donde consideramos como entorno dezi a las lecturas anterior y posterior

Gi =


{i − 1, i + 1} si i ∈ {2, n− 1}
{n,2} si i = 1
{n− 1,1} si i = n

Aplicando estas consideraciones a la ecuación (4.1), se puede formular la función de
verosimilitud como

p(z1, z2, . . . , zn | x,8) =

p(z1 | x,8) · p(zn | z1, zn−1, x,8) ·
n−1∏
i=2

p(zi | zj , x,8). (4.4)

Para calcular todos los términos de esta expresión, debemos formular las probabilidades
condicionales que aparecen en la misma.

Primero detallamos algo más la ecuación (4.3), en donde se formula la probabilidad
condicional de una lecturazi dadas las lecturas contiguas, la representación del entorno y
dada la existencia de un obstáculo frente azi . Se deben contemplar dos casos: o bien el
obstáculo frente azi ha sido detectado por alguna lectura contigua, o bien ninguna lectura
contigua lo ha detectado. Para ello se descompone el eventoo (existencia de un obstáculo
frente azi) en dos eventos:o1, que denota el caso en que el obstáculo ha afectado alguna
lectura contigua azi y o2, que denota el caso contrario. Las probabilidades de ambos eventos
deben sumarq:

p(o1) = q1, p(o2) = q2 | q1+ q2 = q.
En el casoo1 la probabilidad dezi depende de los valores de las lecturas contiguas, ya

que se supone que alguna de ellas ha detectado el obstáculo que hay frente azi y quezi
deberá dar un valor similar a ésta

p(zi | zj 6=i , x, o1) = p(zi | zj∈Gi ) (4.5)
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En el casoo2, en el que el obstáculo frente a la lectura no ha sido detectado por ninguna
lectura contigua, estas lecturas no aportan ninguna información sobre la posición del obs-
táculo, por lo que la probabilidad dezi no depende de ninguna de ellas, sino de la presencia
del obstáculo y del entorno

p(zi | zj 6=i , x, o2) = p(zi | x, o) (4.6)

Tras alguna derivación, utilizando teoría básica de probabilidad y las ecuaciones (4.2),
(4.5) y (4.6) se llega a las siguientes expresiones (4.7), (4.8) y (4.9) que definen las proba-
bilidades condicionales usadas en la función de verosimilitud anterior (4.4)

p(zi | x,8) = qp(zi | x, o)+ (1− q)p(zi | x) (4.7)

p(zi | zi−1, x,8) = q1p(zi | zi−1)+ q2p(zi | x, o)+ (1− q)p(zi | x) (4.8)

p(zi | zi−1, zi+1, x,8) = q1p(zi | zi−1, zi+1)+ q2p(zi | x, o)+ (1− q)p(zi | x) (4.9)

La ecuación (4.7) establece que la verosimilitud dezi depende de la verosimilitud de
que dicha lectura haya sido producida por un obstáculo en el entornox, ponderada por la
probabilidad de que exista un obstáculo, y de la verosimilitud de la lectura dado únicamente
el entornox, ponderada por la probabilidad de que no exista ningún obstáculo.

Las expresiones (4.8) y (4.9) definen las probabilidades condicionales de una lecturazi
en función de lecturas contiguas, el entorno y la presencia de un obstáculo.

4.2.2 Funciones de probabilidad condicional

En esta sección se definen las funciones de probabilidad condicional en las que se basa
la función de verosimilitud (4.4). Estas funciones sonp(zi | x), p(zi | x, o), p(zi | zi−1) y
p(zi | zi−1, zi+1).

La primera de ellas define la verosimilitud de una lecturazi dada una posiciónx en el
entorno.

p(zi | x) =
∑
li (x)

1√
2πσ1

exp(−(li(x)− zi)
2

2σ 2
1

)p(li(x)) (4.10)

Esta densidad se formula como una suma de distribuciones normales con desviaciones
típicasσ1 centradas en las lecturasli(x) proporcionadas por el modelo simulado del sonar
en la posiciónx. Recordemos queli(x) es una variable aleatoria definida por el modelo del
sonar y que modela la lectura realizada por el sonar en la direcciónθi en una posiciónx del
entorno.

La segunda función de densidad define la verosimilitud de una lectura dado un obstáculo
y una posición.
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p(zi | x, o) =
{

1/(Ks − ri(x)) Ks ≤ zi ≤ ri(x)
0 para cualquier otro valor

(4.11)

Esta densidad se define como una distribución uniforme en el intervalo(Ks, ri(x)),
siendoKs la distancia de seguridad de los métodos de navegación local (distancia en la que
es seguro que no existirá un obstáculo) yri(x) la menor distancia desdex a un segmento del
entorno en la direcciónθi .

Por último, las distribuciones condicionalesp(zi | zj ) yp(zi | zj , zk) se modelan, respec-
tivamente, como una distribución normal centrada enzj y como una suma de dos normales
centradas enzj y zk en el segundo.

p(zi | zj ) = 1√
2πσ2

exp(−(zi − zj )
2

2σ 2
2

) (4.12)

p(zi | zj , zk) = 1

2
√

2πσ3

exp(−(zi − zj ))
2

2σ 2
3

)+ 1

2
√

2πσ3

exp(−(zi − zk))
2

2σ 2
3

). (4.13)

4.2.3 Experimentos

En esta sección presentamos un ejemplo representativo del funcionamiento del modelo de
observación.

Figura 4.3: Representación de la función de densidad de las lecturas del sonar,p(zi | x), para
una posición(x, y) fija del robot en un entorno de final de pasillo centrado en la posición en
la que se han tomado las lecturas. A la izquierda nuestro modelo, a la derecha el modelo de
(Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, y Thrun 1998).
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Figura 4.4: Situación de PIXIE en el experimento con el modelo de observación.

Utilizamos la función de verosimilitudp(z | x) para encontrar la posición de máxima
verosimilitud de PIXIE en un final de pasillo, a partir de lecturas realizadas por su anillo
de sonares. Comprobaremos que la función de probabilidad propuesta mejora mucho los
resultados que se obtienen utilizando un modelo más sencillo del sensor, como el propuesto
por (Fox, Burgard, Thrun, y Cremers 1998b). En este modelo se simula la distancia obtenida
por un sonar como la distancia al elemento del entorno más cercano en la orientación del
sonar. En la figura 4.3 se muestran las funciones de densidad producidas por cada uno de
los modelos.

Es importante resaltar, para colocar los resultados en su justa medida, que el barrido
se han extraído del conjunto de lecturas de la figura 3.8, lecturas con una gran cantidad de
ruido producido por la presencia en el pasillo de múltiples columnas y por la abundancia de
puertas (ver fotografía en la figura 4.4).
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Figura 4.5: Superior: Barrido de 24 lecturas del anillo de sonares en la posición del robot
en la que se tomó el barrido . Inferior izquierda: posición de máxima verosimilitud con
la función propuesta. Inferior derecha: posición de máxima verosimilitud con la función
simplificada.

El experimento ha consistido en, dadas unas lecturas de los sonares (ver figura 4.5),
buscar la localizaciónx = (x, y, θ) demáxima verosimilitud(xMV ) suponiendo conocido
las dimensiones del final del pasillo.

Esta localización es aquella para la que el modelo de observación devuelve una proba-
bilidad máxima, esto es

xMV = arg max
x
p(z | x).

En este ejemplo no se considera el modelo de movimiento del robot, ni las probabilidades
a priori de las configuraciones, ya que se pretende mostrar el comportamiento aislado de la
función de verosimilitud.

Las tres componentes de la posición se han discretizado para poder llevar a cabo la ex-
perimentación. Se ha calculado, para el barrido de lecturasz, su verosimilitudp(z | x, y, θ),
con

Hx = {20,40,60, . . . ,420} (21 hipótesis)
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Parámetros Valores reales Máxima verosimilitud 1 Máxima verosimilitud 2

x 190 cms. 150 cms. 290 cms.
y 80 cms. 90 cms. 110 cms.
θ 180 grad. 170 grad. 0 grad.

Tabla 4.1: Comparación de la posición real de PIXIE (primera columna) con de las posiciones
de máxima verosimilitud de nuestro modelo de observación (segunda columna) y del modelo
de observación de Fox (tercera columna).

Hy = {20,40,60,80,100} (5 hipótesis)

Hθ = {9,18,27, . . . ,360} (40 hipótesis)

El resumen de la comparación entre ambos modelos de observación se muestra en la
tabla 4.1. Se puede comprobar que la corrección del modelo propuesto es, en este caso,
mucho mayor que la del propuesto por Fox. La posición real del robot es (190,90,180),
la calculado con nuestro modelo es (150,90,170) y la calculada con el modelo de Fox es
(290,110,0).

Es interesante observar qué valores de probabilidad calculan los modelos de observación
para el todas las posibles posiciones del robot. Para ello representamos (figuras 4.6 y 4.7)
los las probabilidades marginales de dos de los parámetros variando el tercero. Podemos
comprobar que el modelo de observación propuesto es más sensible y selectivo (además de
exacto) que el de Fox.

Por último, en la figura 4.8 se representa la verosimilitud marginal dex ey con respecto
a θ ,

p(z | tx, ty) =
∑
θ∈Hθ

p(z | tx, ty, θ).

Esta marginal puede entenderse como la información que proporciona la función de verosi-
militud sobre la localización de PIXIE en el pasillo.
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Figura 4.6: Función de verosimilitud propuesta. Verosimilitudes marginales dex, y y θ .
Posición real del robot:x = 190,y = 80,θ = 180.
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Posición real del robot:x = 190,y = 80,θ = 180.
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y = 80,θ = 180.
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4.3 Modelo dinámico

En muchos problemas de estimación temporal (seguimiento de objetos en imágenes, por
ejemplo) el sistema no proporciona ninguna información sobre su evolución o es muy com-
plicada la obtención de la misma. Por ejemplo, supongamos la primera instantánea de una
película de una persona caminando. En ausencia de más información es muy complicado
dar una estimación de hacia dónde se moverá la imagen de la persona. Es necesario entonces
suponer un modelo a priori de la evolución temporal del sistema. Por ejemplo, se puede
suponer que en el tipo de secuencias que se analizan las personas se mueven hacia la derecha,
o se mueven con una velocidad constante.

En el caso de los robots móviles, sin embargo, se tiene la ventaja de que el sistema
proporciona información de su evolución, mediante lo que se denominaodometría. El robot
va integrando los incrementos de posiciónx, y y de orientaciónθ medidos con contadores
(shaft encoders) situados en sus partes móviles. Estas medidas permiten estimar incrementos
pequeños de posición del robot, pero no es aconsejable su uso para localizarlo en periodos
largos, debido al alto error acumulativo de las mismas.

El modelo de movimiento del robot se puede formular, pues, a partir de las posiciones
del robot proporcionadas por la odometría. Supongamos que las posiciones estimadas por
odometría en el instante anterior son(x̂t−1, ŷt−1, θ̂t−1), y en el instante actual(x̂t , ŷt , θ̂t ). El
desplazamiento lineal del robot estimado por odometría4t−1d̂ entre el instantet − 1 y el t
y el desplazamiento angular del mismo4t−1θ̂ se pueden estimar como

4t−1d̂ =
√
(x̂t − x̂t−1)2+ (ŷt − ŷt−1)2 (4.14)

4t−1θ̂ = θ̂t − θ̂t−1 (4.15)

Podemos definir entonces una variable aleatoria,4t−1d que define el desplazamiento
real del robot dado un desplazamiento4t−1d̂ medido mediante la odometría. Su función de
densidad se define como una distribución normal de media4t−1d̂ y desviación típicaσd

p(4t−1d | 4t−1d̂) = 1√
2πσd

exp(−(4t−1d −4t−1d̂)
2

2σ 2
x

) (4.16)

Una vez definida la variable aleatoria4t−1d es posible formular las posiciones del robot
en el instantet , xt e yt , como variables aleatorias calculadas a partir de4t−1d, y de las
posiciones en el instante anterior

xt = xt−1+ d cos(θt−1) (4.17)

yt = yt−1+ d sin(θt−1). (4.18)



4.4. DISCUSIÓN 95

Las funciones de densidad dext e yt se pueden calcular y muestrear a partir de las
ecuaciones 4.15,4.16 y 4.18.

La orientación del robot en el instantet , θt , la formulamos también como una variable
aleatoria con función de densidad normal centrada en la orientación estimada

p(θt | 4t−1θ̂ ) = 1√
2πσθ

exp(−(θt − (θt−1+4t−1θ̂ ))
2

2σ 2
θ

) (4.19)

4.4 Discusión

En este capítulo se han propuesto distintos modelos necesarios para la localización y el
mapeado bayesianos.

En primer lugar, se ha presentado un modelo paramétrico de mapa de entorno, basado
en regiones poligonales. La posibilidad de definir las posiciones de sus vértices de for-
ma paramétrica dota al modelo de gran flexibilidad y permite formular de forma sencilla
restricciones geométricas en los mapas de entorno.

En segundo lugar, se ha propuesto un modelo de observación robusto basado en el
modelo del sonar del capítulo anterior y en una formulación probabilística que contempla la
posible presencia en el entorno de obstáculos no modelados. Se ha comprobado, con datos
obtenidos del robot PIXIE, que el modelo es más robusto y fiable que otros modelos más
simples presentados en la literatura.

Por último, se ha presentado un modelo de movimiento que define la probabilidad de
localización del robot, dado una localización anterior y unos datos de odometría.
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Capítulo 5

Localización basada en filtros de
partículas

La formulación bayesiana del problema de localización global choca con un problema fun-
damental: ¿cómo representar la función de probabilidad a posteriori?. Esta función de
probabilidad estima las posiciones más probables del robot. Normalmente, debido al ruido
producido por obstáculos no modelados o a ambigüedades en la percepción del entorno, esta
función será multimodal, esto es, existirán posiciones muy distintas con alta probabilidad de
que el robot se encuentre simultáneamente en ellas.

La mejor solución planteada hasta el momento ha sido la utilización de unarejilla de
probabilidad, una rejilla que discretiza el espacio de estados (todas las posibles posiciones
del robot en el entorno). Los algoritmos de localización que utilizan esta solución calculan
la probabilidad de que el robot esté situado en cada una de las celdillas utilizando el modelo
bayesiano. Sin embargo, esta solución tiene un alto coste espacial, computacional y obliga
a definir las dimensiones de las celdillas de formaad-hoc.

En este capítulo se presenta el filtrobootstrap, el cual resuelve el problema representando
la función de densidad por un conjunto de muestras extraídas de la distribución.

5.1 Introducción

En este capítulo se describe un algoritmo de estimación muestral de la densidad de probabi-
lidad a posteriorip(xt |Zt,At−1) que define el estado del robot.

Tal y como se formuló en el capítulo 2, esta densidad de probabilidad representa el estado
del robot en el instante actual,xt , dadas unas observaciones realizadas por sus sensores,
Zt = {z1, . . . , zt}, y una secuencia de acciones realizadas,At−1 = {a1, . . . ,at−1}.

97
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Si resumimos la formulación del capítulo 2, podemos descomponer el problema del
cálculo dep(xt |Zt,At−1) en dos pasos: predicción e integración de las observaciones.

1. Predicción.

En este paso se utiliza elmodelo de movimiento(ver sección 4.3) para predecir la
posición del robot en el instante actual, a partir de la densidad de probabilidad del
instante anterior. Esta densidad se puede calcular mediante la integración

p(xt |Zt−1, At−1) =
∫

xt−1

p(xt | xt−1,at−1)p(xt−1 |Zt−1, At−1). (5.1)

2. Integración de las observaciones.

En el segundo paso se integran las observaciones realizadas en el instante actual,
zt . Para ello se utiliza elmodelo de observación(ver sección 4.2) y se ponderan las
probabilidades obtenidas por la fase anterior en función de la verosimilitud de las
lecturaszt , para obtener la densidad a posteriori

p(xt |Zt,At−1) = αtp(zt | xt )p(xt |Zt−1, At−1) (5.2)

La constanteαt es un factor de escala que asegura que
∫

xt
p(xt ) = 1.

Tal y como se revisó en la sección 2.5.3, existen varios enfoques para obtener una
representación de la densidad 5.2 (filtro de Kalman, modelos topológicos y rejillas de pro-
babilidad), pero todos ellos presentan distintos problemas.

La solución que planteamos es la representación de la densidad mediante un conjunto
de muestras extraídas de dicha distribución. En el siguiente apartado se presenta el filtro
bootstrapque realiza este muestreo.

5.2 Filtro bootstrap

Presentamos en este apartado el filtrobootstrap, propuesto por Gordon et. al. (Gordon,
Salmond, y Smith 1993). Se trata de un filtro en el que la densidad a posteriori se repre-
senta mediante una distribución de partículas en el espacio de estados. Este enfoque se ha
desarrollado de forma independiente en los últimos años en campos como la estadística, la
economía o la visión artificial (Kitawa 1987; West 1992; Gordon, Salmond, y Smith 1993;
Isard y Blake 1996; Kitawa 1996; Carpenter, Clifford, y Fernhead 1997; Pitt y Shephard
1997). Los nombres con los que se ha denominado este enfoque sonMonte Carlo, CON-
DENSATIONe Importance Resampling Filters, aunque últimamente se está utilizando el
términofiltros de partículaspara todos ellos.
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Son propuestas similares que propagan las partículas (muestras de la función de densidad
a posteriori) utilizando el modelo de movimientop(xt | xt−1,at ) y el modelo de verosimilitud
p(zt | xt ) , de forma que el peso combinado de las partículas de una región aproxima la integral
de la función de densidad a posteriori en esa región.

En concreto, el filtrobootstraprepresenta la densidad a posteriori mediante un conjunto
deN muestras(m1, . . . ,mN) y sus probabilidades asociadas(π1, . . . , πN).

Inicialmente, el conjunto de muestras se escoge a partir de la distribución a priorip(x0).
Si no existe información a priori, entonces las muestras se distribuyen uniformemente por
el espacio de estados. Posteriormente, en cada instante de tiempot , se actualizan lasN
muestras en función de la acción anteriorat−1 y la observación actualzt .

Para ello, (fase 1 del algoritmo) se aplica el modelo de movimientop(xt | xt−1,at−1)

a cada una de lasN muestras, generando un nuevo conjunto de muestras. Estas muestras
representan la predicción de la variable de estado, sin considerar la observación. Para
considerar la observación (fase 2 del algoritmo), se obtiene el pesoπi asociado a cada
muestra según la verosimilitud de que la observación haya sido realizada en un estado del
sistema definido por la muestra,p(zt | xt ).

En un último paso (fase 3 del algoritmo), se remuestrea el conjunto de muestras, extra-
yendo (con reemplazo)N muestras del conjunto actual, con probabilidad proporcional al
peso de cada una. En este nuevo conjunto, por ejemplo, desaparecerán las muestras para las
que no hay evidencia de verosimilitud. Una vez construido el nuevo conjunto de muestras,
se escalan los pesos asociados a cada una para que representen la probabilidad asociada a
cada muestra. Este nuevo conjunto de muestras constituye una representación muestral de
la probabilidad a posteriori. En la tabla 5.1 se detalla este algoritmo y en la figura 5.1 se
explica gráficamente la evolución de las muestras en cada fase.
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Fase de
predicción

Fase de
actualización de
observaciones

Fase de
remuestreo

Figura 5.1: Funcionamiento del algoritmobootstrap. La figura supone que las muestras están
estimando un único parámetro, distribuido en el eje horizontal. Las muestras se representan
por círculos centrados en el valor del parámetro que representan. El área de los círculos
representa el peso de cada muestra.
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Algoritmo BOOTSTRAP

A partir del conjunto anterior de muestrasMt−1 =
{(m1

t−1, π
1
t−1), . . . , (m

N
t−1, π

N
t−1)} en el instantet − 1, construir un nue-

vo conjunto de muestrasMt = {(m1
t , π

1
t ), . . . , (m

N
t , π

N
t )} para el instante

actualt .

1. Fase de predicción:

Seaat−1 la acción ejecutada por el sistema en el instantet − 1.

Para cada muestrami
t−1 ∈ Mt−1, predecir su nuevo estado en el instante

t , muestreando la densidad que define el modelo de movimiento

m̃i
t ← Muestra dep(xt | xt−1 = mi

t−1,at−1).

De esta forma, se construye un nuevo conjunto deN muestrasM̃t para
el instante actual.

2. Fase de actualización de observaciones:

Seazt la observación realizada por el sistema en el instante actualt .

Para cada muestrãmi
t ∈ M̃t , actualizar su peso asociadoπit según la

verosimilitud de que los datoszt hayan sido observados en el estadom̃i
t

π̃ i ← p(zt | xt = m̃i
t ).

3. Fase de remuestreo:

Construir el nuevo conjunto deN muestrasMt remuestreando (con sus-
titución) el conjuntoM̃t , de forma que se escoge cada muestram̃i

t con
probabilidad proporcional a la verosimilitud de la mismaπ̃ it .

Desdei = 1 hastaN :
(mi

t , π
i
t )← Escoger muestra dẽMt

Normalizar todas las probabilidadesπit de las muestras deMt de forma
que

∑T
i=1π

i
t = 1. Para ello

πit ←
πit∑T
i=1π

i
t

.

Tabla 5.1: Filtro bootstrap.
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5.3 Justificación teórica

Una justificación teórica del funcionamiento del algoritmo se formula en (Carpenter, Clifford,
y Fernhead 1997; Pitt y Shephard 1997). Presentamos a continuación esta justificación.

• Fase de predicción

En esta fase se obtiene un conjunto de muestras de la función de densidadp(xt |Zt−1, At−1),
que representa el estado del sistema, una vez actualizada la ultima acciónat−1. Para
ello usamos el modelo de movimiento y el conjunto de muestrasMt−1 del instante
anterior para construir la siguiente función de densidad (Pitt y Shephard 1997)

p̂(xt |Zt−1, At−1) =
N∑
i=1

p(xt | xt−1 = mi
t−1,at−1). (5.3)

Esta ecuación proporciona una mezcla de distribuciones que aproximap(xt |Zt−1, At−1).
Para muestrear esta distribución es posible utilizar el método demuestreo estratificado
en el que se extrae una muestra de cada componente de la mezcla. Para ello se aplica
el modelo de movimiento a cada una de lasN muestras deMt−1, para obtenerM̃t .

• Fase de actualización

En la segunda fase se debe utilizar el modelo de observación para obtener las muestras
Mt de la distribución a posteriorip(xt |Zt,At−1). La siguiente distribución aproxima
esta densidad

p(xt |Zt,At−1) = αp(zt | xt )p̂(xt |Zt−1, At−1). (5.4)

La técnica delmuestreo por rechazo(ver apéndice A) puede utilizarse para muestrear
esta distribución. Esto es debido a que la densidadp̂(xt |Zt−1, At−1) puede muestrear-
se (de hecho, el conjuntõMt es un conjunto de muestras correctas de esta distribución)
y la probabilidadp(zt | xt ) puede calcularse (mediante el modelo de observación).

El conjunto de muestras resultantes y sus pesos,Mt , representa la distribución a
posteriori.

5.4 Aplicación a la estimación de elementos topológicos

Presentamos en esta sección resultados experimentales que muestran cómo se puede aplicar el
enfoque de estimación bayesiana temporal y el filtrobootstrapa la estimación y seguimiento
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Figura 5.2: Características topológicas usadas en el trabajo: pasillos y finales de pasillo. Los
pasillos quedan definidos con tres parámetros (distancia a una y otra pared y orientación) y
los finales de pasillo con cuatro (distancias a las paredes y al final del pasillo y orientación).

robusto de estas características topológicas, en concreto, pasillos y finales de pasillos (ver
figura 5.2). Los modelos de observación y movimiento que se utilizan son los que se plantean
en el capítulo 4. Los parámetros del sistema son distancias a las paredes y orientación local
del robot con respecto al pasillo. Esta metodología es genérica y permite ser aplicada a otro
tipo de características topológicas, como conexiones entre pasillos, etc.

La obtención de características estables y robustas del entorno en un robot móvil es el
paso previo para una posterior extracción autónoma de mapas del entorno, localización en
el mismo o navegación de una localización a otra (Kortenkamp, Bonasso, y Murphi 1998).
Existe una amplia colección de trabajos en los que se proponen métodos para filtrar las
lecturas de sonares y obtener características geométricas elementales (Drumheller 1987;
Barshan y Kuc 1990; McKerrow 1993). Sin embargo, las características obtenidas en todos
ellos son muy locales, como aristas, esquinas o segmentos, y esta propia localidad hace
que sean muy sensibles al ruido, poco robustas y poco estables. Esto último se acentúa en
entornos dinámicos y variables, del tipo en los que suelen evolucionar estos robots.

Para comprobar la técnica propuesta se han realizado una serie de experimentos en los
entornos simulados que aparecen en la figura 5.3. En todos los experimentos el robot se
mueve evitando obstáculos a una velocidad de 25 cm/s y realiza una lectura de sensores cada
0.25 segundos. Cada vez que se realiza una lectura se ejecuta un paso del filtrobootstrap.
La velocidad del algoritmo es aceptable, funcionando a 1/4 del tiempo real conN = 300
muestras en un procesador Pentium II. Futuras optimizaciones del código harán posible la
ejecución del algoritmo en tiempo real.

En los siguientes apartados veremos ejemplos del funcionamiento del algoritmo en dis-
tintos instantes de tiempo. Dibujaremos las muestras generadas por el algoritmo sobre el
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Figura 5.3: Algunos de los entornos de prueba en los que se han realizado los experimentos.
El entorno 1 consiste en un pasillo con dos obstáculos y el 2 un pasillo con múltiples puertas.

entorno real, y cada muestra tendrá un tono de gris proporcional a su probabilidad, siendo
más oscuras cuanto mayor probabilidad tengan.

• Experimento 1

Fase de inicialización

En la figura 5.4 se puede observar el proceso de inicialización del conjunto de muestras
de la característicapasillo. Recordemos que cuanto más oscura es la muestra mayor
probabilidad asociada tiene. El número de muestras utilizadas esN = 300. El tiempo
de una instantánea a otra es de 1 segundo.

Seguimiento de pasillos con obstáculos

En la figura 5.5 se puede ver la continuación de la situación anterior. Una vez centrado
el conjunto de muestras alrededor del pasillo real todas las muestras bajan en verosi-
militud al pasar el robot frente a un obstáculo (instantánea 8). En la instantánea 9, el
ruido gaussiano del modelo de movimiento genera algunas muestras de pasillos más
cercanos al obstáculo, pero la media de la distribución no cambia de forma sensible.
En las instantáneas 10 y 11 el robot ha superado el obstáculo, vuelven a realizarse
lecturas del pasillo real y la distribución se mueve otra vez hacia el pasillo real.

• Experimento 2

En la figura 5.6 se comprueba el funcionamiento del algoritmo siguiendo finales de
pasillo en un entorno complicado como el número 2. La dificultad de este entorno
se debe a que el robot no obtiene ninguna lectura del pasillo cuando pasa frente a
las puertas. El número de muestras de este experimento es el mismo que el anterior
(N = 300). En la instantánea 1 se ven las muestras ya inicializadas. De la instantánea 1
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a la 9 el robot pasa frente a diversas puertas, con lo que las muestras han evolucionado
según el modelo dinámico del robot, sin ser reforzadas por lecturas del sonar. Sin
embargo, cuando el robot vuelve a detectar el pasillo vemos como en las instantáneas
10 y 13 el algoritmo vuelve a reforzar las muestras correctas.

• Experimento 3

Un último conjunto de pruebas (figuras 5.7 y 5.8) se ha realizado a partir de las lecturas
de sonar tomadas por PIXIE evolucionando dentro de un pasillo. Al igual que en los
experimentos simulados, el robot se mueve evitando obstáculos a una velocidad de
25 cm/s y realiza una lectura de sensores cada 0.25 segundos. El número de muestras
también es de 300. Cada vez que se realiza una lectura se ejecuta un paso del filtro
bootstrap. Las lecturas son especialmente ruidosas, debido a las columnas presentes
en uno de los lados del pasillo.
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Figura 5.4:Experimento 1. Inicialización de la característicapasilloen el entorno 1.
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Figura 5.5:Experimento 1. Seguimiento del pasillo moviéndose el robot en el entorno 1.
El obstáculo puede verse como un segmento recto paralelo al pasillo.
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Figura 5.6:Experimento 2. Seguimiento de finales de pasillo moviéndose el robot en el
entorno 2.
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Figura 5.7:Experimento 3. Muestras generadas siguiendo un pasillo en datos reales.
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3 4

Figura 5.8:Experimento 3. Posiciones medias estimadas del pasillo. Los puntos represen-
tan las lecturas realizadas por el robot.
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5.5 Aplicación a la localización

Un segundo grupo de experimentos aplica el filtrobootstrapal problema de localización
propiamente dicho. Se trata de estimar (localización global) y realizar un seguimiento la
posición globalx = (x, y, θ) del robot en un entorno conocido de antemano.

Cada muestrami del algoritmobootstraprepresenta entonces una posible posición
(xi, yi, θi) del robot en el entorno conocido. El algoritmo itera aplicando el modelo de
movimiento a cada una de las muestras y actualizando su peso proporcionalmente a la ve-
rosimilitud de que las lecturas de sonar se hayan realizado desde la posición global definida
por la muestra.

Se han realizado una gran variedad de experimentos, variando distintos elementos del
filtro, para comprobar su funcionamiento.

Al igual que en los experimentos anteriores, el robot se mueve por el entorno evitando
obstáculos a una velocidad de 25 cm/s y se obtienen lecturas de sus sonares y medidas de
odometría cada 0.25 segundos (4 veces por segundo). En los experimentos 1 al 5 los datos
se han tomado del simulador. En el experimento 6 los datos se han tomado de PIXIE. El
modelo de entorno es el mismo para ambos casos.

• Experimento 1

En un primer experimento (figuras 5.9 5.10,5.11,5.12) se realiza una localización
global con el robot moviéndose a lo largo de un pasillo (zona de alta incertidumbre en
la percepción) y entrando en una zona más abierta. Las distintas figuras representan el
comportamiento del filtrobootstrapcon 1000, 343 y 125 muestras respectivamente.
En cada figura se muestran algunas instantáneas de la localización, representándose
todas las muestras de la distribución con un tono de gris proporcional a su verosimilitud.
En la parte inferior de las figuras se muestra una gráfica con la evolución del error
absoluto medio de cada parámetro a estimar con respecto al tiempo (eje horizontal).

Se puede observar que en una primera fase, mientras el robot se mueve por el pasillo,
las muestras se distribuyen a lo largo del mismo y el error de estimación de la posición
x del robot es muy elevado. Esto es debido a que la verosimilitud de las lecturas es alta
en todas las posiciones centrales del pasillo, siempre que el robot esté orientado hacia
la derecha. Por eso, se puede comprobar que el error de estimación de la posicióny

y de la orientaciónθ es bastante bajo desde los primeros instantes de tiempo.

En el momento en que el robot entra en la zona abierta a su izquierda (alrededor
del instante 18), la localización se realiza correctamente, siempre que el número de
muestras sea suficiente (1000 y 343). En el caso del experimento con 125 muestras
los resultados no son buenos, debido a que el número de muestras no es suficiente para
ocupar toda la zona verosímil del espacio de estados.
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Por último, en la figura 5.13 se muestra la evolución de la entropía de la distribución
de probabilidad en cada instante de tiempo.

Hay que resaltar que en los casos en los que las muestras terminan concentrándose
alrededor de una posición la entropía se reduce de forma acorde con esta concentra-
ción de la distribución. En el caso del experimento con 125 muestras, podemos ver
que la entropía siempre es constante, ya que no se produce esta concentración de la
distribución.

• Experimento 2

En la segunda prueba se introduce una modificación en el filtrobootstrap, para intentar
resolver el problema del número de muestras escaso. Consiste en modificar la fase de
remuestreo para generar aleatoriamente un porcentaje de las muestras.

En el caso de la figura 5.14, el 20 por ciento de las muestras se genera de nuevo
aleatoriamente en cada iteración. De esta forma, si la distribución no está centrada en
la posición real del robot, es posible que alguna de las muestras aleatorias caiga cerca
de esta posición real del robot. Al calcular la verosimilitud, esta muestra vencerá al
resto e inclinará la distribución hacia ella.

Se puede observar que este comportamiento es el que sucede en la serie temporal,
aunque hay que esperar al instante 38 para que ocurra.

• Experimento 3

En este experimento (figura 5.15) se inicializa el robot en una esquina de la habitación,
una zona de baja ambigüedad, ya que las lecturas de los sonares son muy características.
Se puede comprobar que la localización es muy rápida, centrándose toda la distribución
de muestras en tan sólo 4 instantes de tiempo.

• Experimento 4

En esta prueba (figura 5.16) sucede lo contrario que en el experimento 1. Inicialmente
el robot se encuentra en una zona muy característica, con lo que la localización es muy
rápida, para pasar posteriormente a vagabundear por el pasillo.

A partir de la entrada en el pasillo (instante 87) la distribución comienza a dispersarse
debido a la ambigüedad de las lecturas en el pasillo.

En la parte inferior de la figura se muestra la evolución de la entropía de la distribución,
comprobándose de nuevo cómo la entropía puede proporcionar un buen estimador de
la calidad de la localización.



5.5. APLICACIÓN A LA LOCALIZACIÓN 113

• Experimento 5

Un último experimento con datos simulados pretende evidenciar uno de los problemas
más graves del filtrobootstrap. Se trata del problema del colapso, que sucede cuando
las muestras están realizando un seguimiento de una distribución multimodal.

En la figura 5.17 las muestras realizan la localización de un robot moviéndose en zig-
zag en una habitación rectangular. La simetría del entorno hace que dos posiciones
sean igual de verosímiles, y, de hecho, la distribución se centra pronto en esas dos
posibilidades. Sin embargo, después de una evolución de unos 100 instantes de tiempo
en donde se mantiene la multimodalidad, se produce una disparidad en el número de
muestras de uno de los grupos y, al momento, el filtro colapsa en una de las modas.

En la figura 5.18 se comprueba cómo la introducción de un porcentaje de muestras
aleatorias empeora el problema del colapso.

• Experimento 6

En este experimento se realiza el proceso de localización global sobre un conjunto
de lecturas y posiciones leídas por PIXIE, evolucionando en un entorno idéntico al
planteado en los experimentos 1 al 4. En la figura 5.19 se muestran las posiciones y
las lecturas realizadas, que son mucho más ruidosas que las obtenidas por el simulador
(figura 5.9). A pesar de ello, se puede comprobar en la figura 5.20 que el algoritmo
de localización funciona perfectamente.

Figura 5.9: Lecturas y posiciones tomadas del simulador, con las que se han realizado los
experimentos de localización 1 y 2.
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Figura 5.10:Experimento 1. Localización en un pasillo (zona de alta ambiguedad). Mues-
tras con un nivel de gris más oscura indican mayores probabilidades de que el robot se
encuentre en esa posición. Desviación absoluta media de las posicionesx, y y la orientación
θ del robot. Número de muestras=1000.
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Figura 5.11:Experimento 1. Localización en un pasillo (zona de alta ambiguedad). Des-
viación absoluta media de las posicionesx, y y la orientaciónθ del robot. Número de
muestras=343.
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Figura 5.12:Experimento 1. Localización en un pasillo (zona de alta ambiguedad). Des-
viación absoluta media de las posicionesx, y y la orientaciónθ del robot. Número de
muestras=125.
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Figura 5.13:Experimento 1. Entropía de las distribuciones de muestras en cada instante
de tiempo en algunos de los experimentos de localización 5.15, 5.10 y 5.11, en los que se
utilizan 1000, 343 y 125 muestras respectivamente.
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Figura 5.14:Experimento 2. Localización en un pasillo (zona de alta ambigüedad). Des-
viación absoluta media de las posicionesx, y y la orientaciónθ del robot. Número de
muestras=125. Muestras escogidas aleatoriamente = 20 por ciento
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Figura 5.15:Experimento 3. Localización en una zona de alta distinguibilidad. Desviación
absoluta media de las posicionesx,y y la orientaciónθ del robot. Número de muestras=1000.
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Figura 5.16:Experimento 4. Ejemplo de serie temporal que termina en una mala localiza-
ción. Número de muestras=125. Abajo: representación de la entropía de la distribución de
muestras en cada instante de tiempo (suavizada con una ventana de 3 instantes de tiempo) .
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Figura 5.17:Experimento 5. Problemas en situaciones simétricas, en donde se produce
multimodalidad. Colapso del filtro de bootstrap.
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Figura 5.18:Experimento 5. La selección de muestras aleatorias no soluciona el problema
del colapso.

Figura 5.19:Experimento 6. Lecturas y posiciones reales, con las que se ha realizado el
experimento de localización 6.
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Figura 5.20:Experimento 6. Localización global con datos reales de PIXIE. Número de
muestras = 1000.



124 CAPÍTULO 5. LOCALIZACIÓN BASADA EN FILTROS DE PARTÍCULAS

5.6 Discusión

En este capítulo se ha presentado el filtrobootstrap, adaptándolo al problema de la localiza-
ción global de robots móviles. Este filtro se basa en representar la función de probabilidad
a posteriori mediante un conjunto de muestras extraídas de la distribución y en realizar un
proceso de selección y actualización de las muestras acorde con la estimación bayesiana.

Hemos presentado múltiples ejemplos de los resultados de aplicar este algoritmo al
problema de la localización, en sus distintos aspectos de localización de características
topológicas en el entorno, localización global del robot y seguimiento de la posición.

Se ha demostrado que el algoritmo es efectivo y robusto, salvo en el caso de que la
localización tenga una ambigüedad duradera, como sucede en entornos simétricos o en
problemas de localización global en el que el robot no encuentra pronto zonas distinguibles.
En estos casos se produce el problema más importante del filtro, el problema del colapso de
la distribución.

Se ha probado una estrategia de generación aleatoria de muestras, demostrándose que
alivia el problema del colapso en el caso de la localización global, pero no en el de los
entornos simétricos.



Capítulo 6

Mapeado basado en el algoritmo EM
adaptativo

Para localizar un robot es necesario un mapa del entorno en el que se mueve. Un problema
interesante es la construcción automática de dicho mapa.

Esta construcción automática proporciona una mayor fiabilidad al proceso de localiza-
ción, ya que los modelos bayesianos que se utilizan en este último problema son los mismos
que los que se utilizan en el problema del mapeado. Un modelo de entorno construido con el
mismo modelo con el que después se va a localizar el robot será más robusto que un modelo
construido a mano.

En capítulos anteriores se han definido los mapas paramétricos. Veremos en este capítulo
que es posible determinar los parámetros que mejor adaptan un determinado modelo a las
lecturas realizadas por el robot en el entorno,aún sin conocer las posiciones absolutas desde
las que se han realizado estas lecturas.

6.1 Introducción

El algoritmo EM, introducido por Dempsteret al. (Dempster, Laird, y Rubin 1977), pro-
porciona una técnica iterativa para realizar una estimación de máxima verosimilitud de un
conjunto de parámetros en problemas en los que existendatos ocultosque dependen esta-
dísticamente de los parámetros a estimar y de los datos observados.

La estimación de mapas del entorno es un ejemplo del tipo de problemas en los que
se puede aplicar este algoritmo. Tal y como se detalla en el capítulo 2, el problema se
puede formalizar de la siguiente manera. Un robot móvil ejecuta una secuencia acciones
de movimiento(a1, . . . ,aN−1) por un entorno dado, tomando una serie de observaciones
del mismo (lecturas de alcance, por ejemplo)(z1, . . . , zN). Estas acciones y mediciones

125
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constituyen los datos observados. Las posiciones del robot(x1, . . . , xN) desde las que se han
realizado las mediciones no son conocidas, y constituyen losdatos ocultosdel problema. Se
trata de estimar los parámetrosφ = {d1, . . . , dn} que definen el mapa del entorno de máxima
verosimilitud, dadas las acciones y observaciones y considerando los datos ocultos. Para
resolver el problema se cuenta con un modelo que calcula la verosimilitud de unas lecturas
dadas una posición y unos parámetros del modelo del entorno. También se dispone de un
modelo de movimiento que predice la siguiente posición del robot, dada la posición actual
y la acción ejecutada.

En el apéndice B se detalla el algoritmo EM. Un resumen de su funcionamiento, aplicado
al problema del mapeado, es el siguiente. SeanX = (x1, . . . , xT ) la secuencia de posiciones
del robot (datos ocultos),Z = (z1, . . . , zT ) la secuencia de observaciones del entorno y
A = (a1, . . . ,aT−1) la secuencia de acciones realizadas por el robot. Los conjuntosZ y A
constituyen los datos observados, y se denota porY al conjunto total de datosY = X∪Z∪A.
Los parámetros a estimar son unos parámetrosφ que determinan el mapa del entorno.

El algoritmo EM busca el mapa del entornoφ que maximiza el logaritmo de la función
de verosimilitud marginal de las lecturas y acciones observadas sobre todas las posibles
posiciones del entorno

lnp(Z,A |φ) =
∫
X

lnp(Z,A,X |φ).

Tal y como se describe en el apéndice B, se comienza por un mapa inicialφ0 y se
van obteniendo nuevas soluciones de forma iterativa. En cada iteración se parte del mapa
obtenido en la iteración anterior,φk, para obtener el siguiente valor de los parámetros del
mapa que maximizan laverosimilitud esperadade los datos observados y los datos ocultos,
dado la estimación anterior del mapa y los datos observados. Formalmente, se buscan los
parámetros del mapa que cumplen

arg max
φ
E[lnp(Z,A,X |φ) |Z,A, φk)] =

= arg max
φ

∫
X

ln[p(X,Z,A |φ)]p(X |Z,A, φk).

La última ecuación no se utiliza realmente en el algoritmo, se introduce para clarificar
el término condicional de la primera expresión.

La iteración del algoritmo EM consiste en un paso de estimación (paso E), en el que
se obtienen los valores esperados de las posiciones del entorno, seguido de un paso de
maximización (paso M). En cada iteración la verosimilitud aumenta de forma monótona. En
la tabla 6.1 se formula el algoritmo EM (ver apéndice B para mayor detalle).
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Algoritmo EM

1. Seaφ0 la solución inicial

2. Repetir hasta la convergencia

(a) Paso E:

Calcular el valor esperado de la verosimilitud de los datos comple-
tos, condicionados por los datos observados y por la solución actual
φk

Q(φ |φk) = E[lnp(Z,A,X |φ) |Z,A, φk].

(b) Paso M:

φk+1← arg max
φ
Q(φ |φk).

Tabla 6.1: Formulación del algoritmoestimación-maximización.

6.2 Enfoque muestral del algoritmo EM

En un gran número de problemas no es posible calcular analíticamente los pasos de estima-
ción y maximización, por lo que hay que utilizar otro tipo de enfoques.

Se han propuesto algunos enfoques que implementan el paso de estimación utilizando
técnicas de muestreo (ver (Cappe, Doucet, Lavielle, y Moulines 1999) para un resumen de las
distintas propuestas genéricas). En resumen, todos estos trabajos utilizan el valor estimado
de los parámetros en el instante anteriorφk y los datos observadosz1, . . . , zT para obtener
un conjunto deN muestras de los datos ocultos. Los valores ocultos esperados y la función
Q se pueden estimar entonces a partir de lasN muestras.

En el marco de la estimación bayesiana temporal, algunos trabajos muy recientes utilizan
los algoritmos de estimación muestral como estimadores del paso de estimación. Por ejem-
plo, North y Blake (North y Blake 1998) utilizan el algoritmo EM para estimar los parámetros
que determinan el modelo de movimiento de objetos en secuencias de aprendizaje.

En nuestro caso, dado que la localización es frecuentemente multimodal, utilizar como
estimador la posición esperada, calculando la media de las muestras, introduciría errores
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muy importantes. Proponemos, en su lugar, utilizar un estimador de posición robusto como
es la posición de máxima probabilidad.

En cuanto al paso de maximización, no conocemos propuestas genéricas en la litera-
tura relacionada con el algoritmo EM que permitan realizar la maximización cuando no se
dispone de una fórmula analítica. En el campo de la visión artificial, sin embargo, algunos
trabajos proponen utilizar técnicas adaptativas para encontrar parámetros de máxima vero-
similitud, dados unos datos (ver (Hornegger y Niemann 1997) para una introducción a estos
métodos). Es posible aplicar estas técnicas al algoritmo EM, si se considera que en la fase
de maximización se han obtenido los valores ocultos esperados.

Para aplicar el algoritmo EM al problema de estimación del mapa del entorno es necesario
introducir estas adaptaciones. Un resumen de la propuesta que se plantea en este capítulo se
muestra en la tabla 6.2.

Algoritmo EM muestral

A partir de un valor anterior de los parámetros a estimarφk, de los datos
observadosZ = {z1, . . . , zT } y de las acciones del robotA = {a1, . . . ,aT−1}
se obtienen las posiciones de máxima verosimilitud del robotX̂ = {x̂1, . . . , x̂T }
y se refina la estimación de los parámetros, obteniéndoseφk+1.

1. Fase de estimación:

Utilizar el filtro bootstrap suavizado con el algoritmo de Kitagawa
para obtener las posiciones de máxima verosimilitud del robotX̂ =
{x̂1, . . . , x̂T }, dada la función de verosimilitud de las observaciones
p(zi | xi , φk) y el modelo de movimientop(xi | xi−1,ai−1).

2. Fase de maximización:

Estimar con una búsqueda aleatoria adaptativa los parámetros del mapa
del entorno que maximizan la verosimilitud de las lecturas y las posicio-
nes esperadas

φk+1← arg max
φ

lnp(Z,A, X̂ |φ)

Tabla 6.2: Versión muestral del algoritmo EM para estimación de mapas del entorno.
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6.2.1 Estimación de posiciones esperadas

El filtro bootstraprealiza la estimación muestral de la densidad a posteriorip(xt |Zt,At−1),
representando la función por un conjunto de muestras{(mi

t , π
i
t ), i = 1 . . . N} . Esta función

de densidad representa toda la información conocida acerca de las posiciones del robot,
xt , dada la historia de sus observacionesZT = {z1, . . . , zt} y de sus accionesAT−1 =
{a1, . . . ,at−1}. A partir de cada conjunto de muestras es posible estimar la esperanza de
la distribución a posteriori para ese instante de tiempo utilizando las muestras y sus pesos
asociados

E[xt |Zt,At−1] ≈ x̂t =
N∑
i=1

πit m
i
t (6.1)

Estos valores esperados, sin embargo, no son representativos en el caso de una distribu-
ción multimodal. Por ello proponemos utilizar en su lugar la muestra de mayor verosimilitud
de cada instantánea

x̂t = mi
t |πit ≥ πjt ∀j = 1 . . . N (6.2)

como el conjunto de soluciones de la fase de estimación del algoritmo EM.
Es posible, sin embargo, ajustar aun más estas estimaciones. Las estimacionesx̂t re-

cogen únicamente la información de las observaciones del robot hasta el instantet . Estas
estimaciones suelen tener un alta variabilidad, ya que durante el seguimiento en línea es
normal que se generen varias hipótesis de localización para un mismo instante de tiempo
(recordemos otra vez que se estamos tratando con distribuciones multimodales). Pero tam-
bién sucede con frecuencia que todas las hipótesis menos una desaparecen cuando se hace
evidente que corresponden a distracciones o errores de estimación. Por ello, cuando se dis-
pone de la secuencia completa de observaciones (hasta el instanteT ), es posible utilizar toda
esta información para mejorar estos estimadores, ya que se puede eliminar variabilidad pro-
ducidas por distractores temporales. Se trata entonces de estimar la densidad de probabilidad
p(xt |ZT ,AT−1).

Isard (Isard y Blake 1998b), recogiendo la formulación inicial de Kitagawa (Kitawa
1996), formula un algoritmo para muestrear estas distribuciones. A continuación presenta-
mos una adaptación de este algoritmo que considera la secuencia de acciones(a1, . . . ,aT−1)

realizadas por el robot.
El algoritmo consiste en un barrido hacia adelante (equivalente al cálculo de los valores

α en el algoritmo Baum-Welch), en el que se generan las muestras{(mi
t , π

i
t )} para t =

1, . . . , T , utilizando el filtrobootstrap. Una vez generadas las muestras se reajustan los
pesosπit , para que representen la evidencia proporcionada por las observaciones posteriores
(zt , . . . , zT ,at , . . . ,aT−1).
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Para hacer más compacta la notación, introducimos la siguiente modificación. Sean
Zkj = (zj , . . . , zk) y Akj = (aj , . . . ,ak) las secuencias de observaciones y acciones desde
el instantej hasta el instantek (con j ≥ k). Con esta notación podemos expresar la
probabilidad de una posiciónxt dado todo el conjunto de observaciones y acciones como

p(xt |ZT1 , AT−1
1 ) α

α p(xt , ZTt , A
T−1
t |Zt−1

1 , At−1
1 ) =

p(ZTt , A
T−1
t | xt )p(xt |Zt−1

1 , At−1
1 ) (6.3)

Esta reordenación permite que las posiciones muestreadasmi
t permanezcan fijas después

del paso de suavizado. Recordemos que el conjunto{mi
t } es, aproximadamente, una muestra

correcta de la distribuciónp(xt |Zt−1
1 , At−1

1 ), por lo que, al reemplazar los pesos originales
de las muestrasπit por los pesos suavizados

ψi
t = p(ZTt , AT−1

t | xt = ml
t ) (6.4)

El conjunto {(mi
t , ψ

i
t )}, una vez normalizado, aproximará la distribución requerida

p(xt |ZT1 , AT−1
1 ).

Un algoritmo recursivo para calcular las funciones de densidadp(ZTt , A
T−1
t | xt ) se puede

formular matemáticamente como sigue

p(ZTt , A
T−1
t | xt ) = p(zt | xt )p(ZTt+1, A

T−1
t | xt ) (6.5)

p(ZTt+1, A
T−1
t | xt ) =

∫
xt+1

p(ZTt+1, A
T−1
t+1 )p(xt+1 | xt ,at ) (6.6)

Una implementación concreta requiere la derivación de una aproximaciónδit a la función
p(ZTt+1, A

T−1
t | xt = mi

t ). La integral se puede aproximar mediante un sumatorio

p(ZTt+1, A
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donde

ψi
t+1 = p(ZTt+1, A

T−1
t+1 | xt+1 = ml

t+1) (6.8)

γ it =
N∑
k=1

πkt p(xt+1 = xlt+1 | xt = mk
t ,at ) (6.9)
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representan, respectivamente, los pesos calculados en el paso anterior y una corrección de
las probabilidades que tiene en cuenta los pesosπit .

En la tabla 6.3 (pag. 133) se presenta un algoritmo que realiza estos cálculos.

6.2.2 Mapas de máxima verosimilitud

Una vez calculados los parámetros ocultos esperados (posiciones del robot)X̂ = (x̂1, . . . , x̂T )
a partir de la estimación del mapa anteriorφk y de los datos observados, el algoritmo EM
realiza un paso de maximización. En este paso se debe obtener la nueva estimación de los
parámetros del mapa,θk+1, buscando los parámetros de maxima verosimilitud. Éstos son
los que maximizan el logaritmo de la verosimilitud de las posiciones esperadas, las lecturas
del entorno y las acciones,

φk+1← arg max
φ

lnp(Z,A, X̂ |φ). (6.10)

En la sección 2.6 se formulaba la función de verosimilitudp(Z,A, x1, . . . , xT |φ) como

p(Z | x1, . . . , xT , φ)p(x1, . . . , xT |Z,A),
y, tras desarrollar esta expresión, se llegaba a la ecuación

p(Z,A, x1, . . . , xT |φ) = p(x1)

T∏
t=1

p(zt | xt , φ)
T∏
t=2

p(xt | xt−1,at−1). (6.11)

Sustituyendo esta ecuación en la ecuación 6.10 se llega a la formulación final del mapa
de máxima verosimilitud

φk+1 ← arg max
φ

[
lnp(x1)

T∏
t=1

p(zt | xt , φ)
T∏
t=2

p(xt | xt−1,at−1)

]
=
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φ

[
lnp(x1)+

T∑
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lnp(zt | xt , φ)+
T∑
t=2

lnp(xt | xt−1,at−1)

]
.

Los términosp(x1) yp(xt | xt−1,at−1) son constantes e independientes de los parámetros
φ, por lo que la expresión final queda como

φk+1← arg max
φ

T∑
t=1

lnp(zt | xt = x̂t , φ). (6.12)
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El paso de maximización del algoritmo EM depende, entonces, únicamente del modelo
de observación definido (ver sección 4.2). Debido a que la densidadp(zt | xt , φ) no tiene una
fórmula cerrada no es posible derivar este máximo de forma analítica. Por ello, utilizamos
un sencillo algoritmo de muestreo aleatorio adaptativo, generando un número grande de
muestras de parámetros y realizando una maximización local para cada muestra.

Esta técnica de muestreo aleatorio ha sido utilizada con éxito en gran número de proble-
mas de optimización de visión artificial (Hornegger y Niemann 1997).
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Algoritmo de Kitagawa

Dado un conjunto de muestras de posiciones estimadas del robot{(mi
t , π

i
t )}para

cada instante de tiempot = 1, . . . , T , sustituye los pesosπit de las muestras
por los pesosψi

t que representan la probabilidad de la muestrami asociada
dadatoda la secuencia de observacionesp(xt = mi

t |ZT1 , At−1
1 ).

1. Inicializar los pesosψi
T :

ψi
T = πiT parai = 1, . . . , N

2. Iterar hacia atrás para toda la secuenciat = T − 1, . . . ,1

(a) Calcular el modelo de movimiento:

α
i,j
t = p(xt+1 = mi

t+1 | xt = mj
t ,at ) parai, j = 1, . . . , N.

(b) Calcular los factores de corrección

γ it =
N∑
j=1

π
j
t α

i,j
t parai = 1, . . . , N.

(c) Aproximar las variablesδ

δ
j
t =

N∑
i=1

ψ
j

t+1

α
i,j
t

γ
j
t

parai = 1, . . . , N.

(d) Evaluar los pesos suavizados

ψi
t = πit δit ,

normalizar para que
∑
ψi
t = 1 y almacenarlos con la muestra

correspondiente

{(mi
t , ψ

i
t ), i = 1, . . . , N}.

Tabla 6.3: Algoritmo de suavizado de las probabilidades asociadas a las muestras del filtro
bootstrap.
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6.3 Experimentos

Se presenta en esta sección un conjunto de experimentos sobre el algoritmo de Kitagawa
para el suavizado de la distribución de muestras y un experimento en el que se muestra el
funcionamiento del enfoque EM para el mapeado.

• Experimento 1.

En este experimento (figuras 6.1, 6.2, 6.3, 6.4) se aplica el algoritmo de Kitagawa a
la serie temporal de muestras producidas en el experimento 1 de localización. Re-
cordemos que en ese experimento el robot circula por un pasillo hasta que llega a
una zona con un espacio abierto a su izquierda. En este momento la distribución de
muestras localiza correctamente al robot y durante el resto de instantáneas de la serie
la localización se realiza correctamente.

En la figura 6.1 aparecen las muestras de localización en las instantáneas 1, 30, 67 y
107, junto con una gráfica de la evolución en el tiempo de la entropía de la distribución.
En esta gráfica se puede comprobar que, después de una primera fase en la que la
distribución tiene un alto grado de dispersión, debido a la ambigüedad de las lecturas
del pasillo, en una segunda fase la distribución termina centrándose. Esto sucede
alrededor del instante 30, y continua así hasta el final de la serie.

Es de esperar que el algoritmo de Kitagawa propague hacia atrás la información precisa
en la localización de la segunda fase, centrando también la primera fase.

En la figura 6.2 vemos el resultado de aplicar el algoritmo de Kitagawa. Se muestran
dos instantáneas de la serie temporal (la 16 y la 19) antes y después de aplicar Ki-
tagawa. En la parte superior de la figura se comprueba que la distribución está muy
dispersa a lo largo del pasillo, indicando que todas esas posiciones tienen igual vero-
similitud. Sin embargo, después de aplicar Kitagawa (abajo) vemos cómo obtienen la
mayor verosimilitud las muestras cercanas a la posición real del robot, disminuyendo
drásticamente la verosimilitud del resto de muestras.

En la figura 6.3, para resaltar este efecto, se representan las 30 mejores muestras de
ambas instantáneas antes (arriba) y después (abajo) de aplicar Kitagawa.

Por último, la gráfica de la figura 6.4 muestra el error absoluto medio en la posición
x y la entropía de la serie temporal, también antes y después de aplicar Kitagawa. Se
comprueba que el suavizado reduce drásticamente el error absoluto medio y también
reduce la entropía de la distribución.

• Experimento 2.

En un segundo experimento (figura 6.5) se aplica el suavizado a la serie temporal
resultante del experimento 5 de localización (pag. 121). Recordemos que esta serie
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temporal resultaba de la localización del robot moviéndose en una habitación cerrada.
La simetría del entorno resultaba en una distribución multimodal, que persistía bastante
tiempo hasta que se hacía evidente el problema del colapso del filtro.

La aplicación del suavizado de Kitagawa a esta serie, como podemos ver en la figura
6.5, no elimina la multimodalidad de la distribución. Este comportamiento es correcto,
ya que esta multimodalidad es producto de una ambigüedad de localización, y no de
ruido que desaparece al poco tiempo.

• Experimento 3.

El último experimento muestra un ejemplo de aplicación del algoritmo EM para reali-
zar un mapeado. Los datos han sido tomados del simulador con el robot evolucionando
en una habitación en forma de L invertida. En la figura 6.7 se muestra la evolución
del robot, junto con las lecturas de los sonares.

El modelo de habitación a estimar se puede observar en la figura 6.6. Se define
mediante tres parámetros,d1, d2 y d3, que miden, respectivamente, la anchura del
pasillo vertical, la profundidad del pasillo horizontal y la anchura del pasillo horizontal.

El objetivo del experimento es comprobar si es posible estimar correctamente los
parámetrosd1, d2 y d3 que determinan la forma de la habitación a partir de los datos
obtenidos, utilizando el algoritmo EM.

En la figura 6.8 se muestra la evolución del algoritmo EM. Recordemos que en cada
iteración del algoritmo consiste en dos fases:

1. Aplicación del filtrobootstrappara estimar la localización del robot en toda la
secuencia a partir de los datos y del mejor mapa obtenido en la iteración anterior,
seguida de un suavizado de la distribución mediante el algoritmo de Kitagawa.

2. Búsqueda de los parámetros de máxima verosimilitud para la mejor posición
obtenida para cada instantánea de la secuencia temporal, después de aplicada la
fase anterior.

En esta figura se muestra, en la columna de la izquierda, las mejores posiciones
resultantes de la aplicación del filtrobootstrap, seguido del algoritmo de suavizado,
al mapa resultante de la iteración anterior. La columna de la derecha muestra el mapa
de máxima verosimilitud obtenido con el algoritmo de búsqueda adaptativa planteado
en este capítulo.

Los valores iniciales de los parámetros son(d1 = 500, d2 = 0, d3 = 500). Se puede
comprobar cómo el algoritmo converge rápidamente al mapa correcto(d1 = 250, d2 =
400, d3 = 400).
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Iteración Parámetros Verosimilitud

1 (200,450,400) -71.743
2 (250,400,400) -20.193
3 (250,400,400) -9.408

Tabla 6.4: Evolución del algoritmo EM. Parámetros del mejor mapa obtenido en cada ite-
ración y suma de los logaritmos de las verosimilitudes de las posiciones para ese mapa.
Parámetros del mapa correcto:d1 = 250,d2 = 400,d3 = 400.

En la tabla 6.4 se muestra el resultado del valor a maximizar (suma de los logaritmos
de las verosimilitudes de las posiciones, dado el mapa) en cada iteración, junto con
los parámetros que proporcionan dicho resultado.



6.3. EXPERIMENTOS 137

t = 1 t = 30

t = 67 t = 107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

Figura 6.1: Experimento 1. Ejemplo de una serie temporal a la que se le aplicará el
algoritmo de suavizado. Número de muestras=125. Abajo: representación de la entropía
de la distribución de muestras en cada instante de tiempo (suavizada con una ventana de 3
instantes de tiempo) .
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t = 16 t = 19

Figura 6.2:Experimento 1. Dos instantáneas de la serie temporal antes (arriba) y después
(abajo) de aplicar el algoritmo de Kitagawa.

t = 16 t = 19

Figura 6.3:Experimento 1. Selección de las 30 mejores muestras de cada instantánea de
la figura anterior.
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Figura 6.4:Experimento 1. Arriba: Error absoluto medio en la posiciónx del robot de la
serie de la figura 6.1 antes (error1) y después (error2) de aplicar el algoritmo de Kitagawa.
Abajo: entropía de la misma serie temporal antes (entropía1) y después (entropía2) de aplicar
el algoritmo de Kitagawa. Número de muestras=125.
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Figura 6.5: Experimento 2. Instantánea 29 de la serie temporal mostrada en la figura
5.17 antes (arriba) y después (abajo) de aplicar el algoritmo de Kitagawa. A la derecha de
cada una las 30 muestras con mayor verosimilitud. El algoritmo de Kitagawa no elimina la
multimodalidad de una distribución ambigua.
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Figura 6.6:Experimento 3. Modelo de habitación del experimento 3, definida mediante
los parámetrosd1, d2 y d3.
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Figura 6.7:Experimento 3. Mapa de la habitación y lecturas y movimientos del robot.
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Figura 6.8:Experimento 3. Evolución del algoritmo EM para estimar los mejores paráme-
trosd1, d2 y d3 que definen el mapa de la habitación.
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6.4 Discusión

Se ha presentado en este capítulo un algoritmo deestimación-maximización(EM) que re-
suelve el problema del mapeado. En este problema, el robot evoluciona por el entorno
recogiendo lecturas de los sensores e incrementos de posición obtenidos por odometría.
Una vez realizada la exploración, se buscaoff-lineel mapa que mejor explica las mediciones
obtenidas, aún desconociéndose las posiciones absolutas por las que el robot ha pasado.

Para ello, el algoritmo EM itera una primera fase de estimación y una segunda de ma-
peado.

La fase de estimación se basa en la utilización del filtrobootstrappara obtener la serie
completa de posiciones del robot en todos los instantes de tiempo. A continuación se corrigen
las probabilidades de las muestras de esta serie temporal utilizando el algoritmo de Kitagawa,
y se escogen las muestras de más probabilidad en cada instante de tiempo.

La fase de maximización busca los parámetros del mapa que maximizan la verosimilitud
de las lecturas en las posiciones obtenidas en la fase anterior.

Se ha comprobado el buen funcionamiento del algoritmo de Kitagawa para realizar la
corrección de las probabilidades de las muestras y el correcto funcionamiento del algoritmo
EM para ajustar correctamente los parámetros, obteniendo el mapa del entorno.
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Capítulo 7

Conclusiones

En esta tesis se ha realizado un estudio en profundidad de los problemas de localización y
mapeado de robots móviles en entornos de oficina, basándonos en el enfoque bayesiano.
Este enfoque ha demostrado ser de gran utilidad para formalizar correctamente distintos
aspectos de estos problemas, como son los conceptos deposición más probable, mapa que
mejor se adapta a unas observacioneso trayectoria más probable. Todos estos conceptos
se manejaban habitualmente en la literatura sin tener una contrapartida formal.

El enfoque bayesiano ha demostrado también ser muy fértil en cuanto a las técnicas que
se pueden derivar de él. En concreto, en los últimos años se ha utilizado para resolver el
problema de la localización mediante técnicas basadas en el filtro de Kalman, en las redes
bayesianas o en las rejillas de probabiliad. A estas técnicas hay que añadir la que hemos
propuesto en esta tesis: losfiltros de partículas.

El enfoque de los filtros de partículas, consistente en representar una distribución de
probabilidad mediante un conjunto de muestras, es totalmente novedoso en el campo de la
robótica móvil y es previsible la aparición de múltiples aplicaciones y algoritmos basados
en el mismo. Un ejemplo es la propuesta de algoritmo deestimación-maximizaciónque se
realiza en la tesis para estimar el mejor mapa del entorno.

Esta tesis presenta, en concreto, las siguientes aportaciones, desde el punto de vista de
modelos.

1. Formulación bayesiana que integra los problemas de localización y mapeado: se
presenta una formulación bayesiana de los problemas de localización y mapeado que
generaliza muchas propuestas y que presenta un marco desde el que derivar interesantes
modelos, técnicas e implementaciones.

2. Modelo del sensor de ultrasonidos:se propone un modelo estocástico que define una
función de verosimilitud multimodal de las lecturas de sonar. Este modelo es muy
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realista, funciona correctamente y contempla tipos de lecturas de los sonares que hasta
el momento no se habían modelado (dobles rebotes).

3. Modelo de observación:presentamos un modelo de observación para la localización
del robot que contempla tanto la posibilidad de ruido aleatorio como la de obstácu-
los no modelados. Esta formulación lo hace especialmente robusto y eficiente, en
contraposición con modelos más sencillos utilizados en la literatura.

4. Mapas paramétricos:los modelos de mapas de entorno que proponemos son modelos
métricos parametrizables mediante las posiciones de vertices de polígonos. Este tipo
de parametrización permite definir de una forma sencilla y con pocos parámetros
modelos con restricciones geométricas elaboradas. Esto hará que los algoritmos de
mapeado sean más rápidos y exactos.

En cuanto a técnicas y algoritmos, en la tesis hemos planteado de forma novedosa la
aplicación de una serie de algoritmos a problemas de localización y mapeado:

1. Filtro bootstrap: se aporta la aplicación del filtrobootstrapal problema de la de-
tección de características topológicas, de la localización global y del seguimiento de
posiciones. El algoritmo ha localizado correctamente las características topológicas
y la posición del robot, utilizando tanto datos simulados como datos reales.

2. Algoritmo de Kitagawa:proponemos la aplicación del algoritmo de Kitagawa a la
corrección de la localización de una serie temporal completa. El algoritmo funciona
correctamente con datos del simulador y datos reales.

3. Algoritmo EM:presentamos la formulación de un algoritmo EM basada en partículas
y en técnicas de búsqueda adaptativa, así como la aplicación del algoritmo EM al pro-
blema del mapeado. Se ha comprobado la corrección del algoritmo en datos obtenidos
con el simulador.

Como líneas futuras de desarrollo de esta investigación proponemos las siguientes:

1. Problemas prácticos:se deben solucionar problemas prácticos, como es el tiempo de
computo de los algoritmos de simulación y debootstrap. Se debe mejorar su eficiencia
para que sean aplicables en tiempo real.

2. Colapso del filtro bootstrap:uno de los problemas fundamentales del filtroboots-
trap es su colapso en situaciones de multimodalidad. Es necesario la aportación de
soluciones teóricas y prácticas de este problema.
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3. Distinguibilidad de las posiciones:profundización en los problemas teóricos de distin-
guibilidad de las posiciones, dado un modelo de entorno y un modelos de observación.
Existen posiciones de los entornos que tienen una alta distinguibilidad. Sería intere-
sante utilizar estas posiciones comolandmarksnaturales en los que el robot se va a
relocalizar correctamente. Esta línea lleva a una teoría de la localización activa que
pasa por un uso obligado de la teoría de la información.

4. Extensión a localización por visión:la extensión de la propuesta a visión pasa por
formular la verosimilitud utilizando como datos percibidos por el robot las imágenes
obtenidas por el robot. Se debería comparar esta imagen con la que el robot vería en
las posiciones candidatas. Para ello es necesario formular un modelo del entorno que
permita generar vistas desde posiciones arbitrarias.
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Apéndice A

Muestreo por rechazo

Supongamos una distribución de densidad de probabilidad

p(x) = cg(x)h(x) (A.1)

dondeg(x) puede ser calculada para cualquier valorx y es posible generar muestras de la
distribuciónh(x).

Para generar una población deN muestras(m1, . . . , mN) de la funciónp(x) se puede
utilizar el algoritmo de aceptación y rechazo (ver tabla A).

Algoritmo MUESTREO POR RECHAZO

Salida: Valores(m1, m2, . . . , mN) muestreados de la densidad de probabili-
dadp(x) = cg(x)h(x)

1. i ← 1
2. u← valor aleatorio de la distribuciónU(0,1)
3. y ← valor aleatorio de la distribuciónh(x)
4. Siu ≤ g(y) hacermi = y. En otro caso ir a 2.
5. i ← i + 1 y saltar a 2 hasta quei = N

Tabla A.1: Algoritmo de rechazo y su versión modificada para mejorar su eficiencia.

En la primera versión del algoritmo se generan muestrasy de la distribuciónh(x). El
valor devuelto porg(y), para cada muestra deh(x) determina la probabilidad de aceptar
dicha muestra. Para hacer efectiva esa probabilidad se utiliza el númerou generado por la
distribución uniforme, de manera que la muestra se acepta cuando este número es menor
que el valorg(y).
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Algoritmo MUESTREO POR RECHAZO MODIFICADO

Salida: Valores(m1, m2, . . . , mN) y probabilidades asocidas(π1, π2, . . . , πN)

muestreados de la densidad de probabilidadp(x) = cg(x)h(x)

1. i ← 1
2. mi ← valor aleatorio de la distribuciónh(x)
3. πi ← g(mi)

4. i ← i + 1 y saltar a 2 hasta quei = N

Tabla A.2: Algoritmo de rechazo y su versión modificada para mejorar su eficiencia.

Por ejemplo, supongamos que se genera el númeroy = 1.5 y g(1.5) = 0.75. Esto
significa que la probabilidad de aceptary = 1.5 como un valor aleatorio generado porp(x)
es 0.75. Se utiliza el valor aleatoriou para realizar esta aceptación.

Un problema muy importante del algoritmo de rechazo es que se necesitan demasiadas
muestras cuando la funcióng(x) nos da valores de probabilidad muy pequeños. La mejora
planteada por la versión modificada del algoritmo (ver tabla A) consiste en ir almacenando
las probabilidades obtenidas porg(x) junto con las muestras. De esta forma, como sa-
lida del algoritmo se obtienenN muestras(m1, . . . , mN) y sus probabilidades asociadas
(π1, . . . , πN).



Apéndice B

Algoritmo EM

El algoritmo EM, inicialmente propuesto por Dempster (Dempster, Laird, y Rubin 1977),
presenta un técnica iterativa general para realizar una estimación de máxima verosimilitud
de parámetros de problemas en los que existen ciertosdatos ocultos. Presentamos a conti-
nuación el algoritmo, y un ejemplo de su aplicación a la resolución de un problema concreto,
tomando (Mitchel 1997) como referencia.

B.1 Descripción del algoritmo EM

El algoritmo EM puede aplicarse en muchas situaciones en las que se desea estimar un
conjunto de parámetrosθ que describen una distribución de probabilidad subyacente, dada
únicamente una parte observada de los datos completos producidos por la distribución.
En general, supongamos que en cada realización del experimento aleatorio se observa un
parámetrozi y existe un parámetro ocultoxi . Denotamos entonces porZ = {z1, . . . , zm} al
conjunto de datos observados enm realizaciones del experimento, porX = {x1, . . . , xm} al
conjunto de datos no observados y porY = Z∪X al conjunto completo de datos. Los datos
X pueden considerarse una variable aleatoria cuya distribución de probabilidad depende de
los parámetros a estimarθ y de los datos observadosZ. De la misma forma,Y es una
variable aleatoria ya que está definida en términos de la variable aleatoriaX. Llamemos
h a la hipótesis actual de los valores de los parámetrosθ , y denotemos porh′ la hipótesis
revisada que se estima en cada iteración del algoritmo EM.

El algoritmo EM busca la hipótesish′ que maximiza la esperanzaE[lnp(Y |h′)], siendo
p(Y | θ) la distribución de probabilidad que defineY y que depende de los parámetros desco-
nocidosθ . Esta distribución de probabilidad define la verosimilitud de los datos completos
Y dada una hipótesish′ de los parámetros ocultos. Al maximizar el logaritmo de la distri-
bución se está maximizando la verosimilitud. Se introduce el valor esperadoE[lnp(Y |h′)]
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debido a que el conjunto completo de datosY es una variable aleatoria. Dado que el con-
junto completo de datosY contiene datosX no observados, se deben considerar todos los
posibles valores deX, ponderándolos según su probabilidad. En otras palabras, se calcula el
valor esperadoE[lnp(Y |h′)] sobre la distribución de probabilidad que gobierna la variable
aleatoriaY . Esta distribución está determinada por los valores observadosZ más por la
distribución de los valores no observadosX.

En general, se desconoce la distribución deY , porque está determinada por los parámetros
θ que se intenta estimar. Por ello, el algoritmo EM usa la hipótesis actualh para estimar la
distribución deY . Se define entonces una funciónQ(h |h′) que proporcionaE[lnp(Y |h′)]
como una función deh′, bajo la suposición de queθ = h y dada el conjunto de observaciones
Z del conjunto completo de datosY

Q(h′ |h) = E[lnp(Y |h′) |h,Z].
En la funciónQ(h′ |h) se supone que la hipótesish y los datos observadosZ tienen unos

valores fijos y que éstos definen la distribución de probabilidad de las variables ocultasX (y,
por tanto, sus valores esperados). La distribución de probabilidad deY definida porZ y h
es, entonces, la que se utiliza para calcularE[lnp(Y |h′)] para una hipótesis cualquierah′.
En su forma general, el algoritmo EM repite la siguiente pareja de pasos hasta que converge.

Paso 1: Paso de estimación (E): CalcularQ(h′ |h) utilizando la hipótesis actualh y los
datos observadosZ para estimar la distribución de probabilidad deY

Q(h′ |h)← E[lnp(Y |h′) |h,Z]. (B.1)

Paso 2: Paso de maximización (M): Sustituirh por la hipótesish′ que maximiza la función
Q

h← arg max
h′
Q(h′ |h). (B.2)

B.2 Aplicación a la estimación dek medias

Para ilustrar el funcionamiento del algoritmo EM, vamos a utilizarlo para derivar un algoritmo
que estime las medias de una mezcla dek distribuciones normalesθ = (µ1, . . . , µk) con
igual desviación típicaσ , que se supone conocida. Los datos observadosZ = {zj } son los
datos producidos por la distribución. Los datos no observados

X = {(x1j , . . . , xkj )}, xij = (0,1),
k∑
i=1

xij = 1
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indican cuál de lask distribuciones normales se ha utilizado para obtener el datozj .
Para aplicar EM primero se necesita derivar una expresión deQ(h |h′) para el problema.

Derivemos primero la formulación de lnp(Y |h′). Para un único conjunto de datosyj =
(zj , x1j , . . . , xkj ), la verosimilitud de que estos datos hayan sido obtenidos con una hipótesis
h′ = (µ′1, . . . , µ′k) se puede escribir como

p(yj |h′) = p(zj , x1j , . . . , xkj |h′) = 1√
2πσ 2

exp(− 1

2σ 2

k∑
i=1

xji(zj − µ′i)2). (B.3)

Esta expresión proporciona la probabilidad de que el valorzj haya sido generado por
la distribución normal seleccionada por los datos ocultos. La probabilidad para todos las
instanciasm de los datos es

lnp(Y |h′) = ln
m∏
i=j
p(yj |h′) =

=
m∑
j=1

lnp(yj |h′) =

=
m∑
j=1

(ln
1√

2πσ 2
− 1

2σ 2

k∑
i=1

xij (zj − µ′i)2) (B.4)

Por último, se debe calcular el valor esperado de esta expresión lnp(Y |h′) sobre toda la
distribución de probabilidad que gobiernaY o, de forma equivalente, sobre la distribución
de los datos ocultos deY , xij . Al ser la expresión anterior una expresión linear en función
de estos datos, es posible derivar la siguiente expresión

E[lnp(Y |h′)] = E[
m∑
j=1

(ln
1√

2πσ 2
− 1

2σ 2

k∑
i=1

xij (zj − µ′i)2)]

=
m∑
j=1

(ln
1√

2πσ 2
− 1

2σ 2

k∑
i=1

E[xij ](zj − µ′i)2) (B.5)

Para resumir, la funciónQ(h |h′) del problema de lask medias es

Q(h′ |h) =
m∑
j=1

(ln
1√

2πσ 2
− 1

2σ 2

k∑
i=1

E[xij ](zj − µ′i)2), (B.6)
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dondeh′ = (µ′1, . . . , µ′k) y donde los valores esperados de los datos ocultosE[xij ] se
calculan a partir de la hipótesis actual y a los datos observadosZ. Este valorE[xij ] es
simplemente la probabilidad de que la muestrazj haya sido generada por la distribución
normali

E[xij ] = p(x = zj |µ = µi)∑k
n=1p(x = zj |µ = µn)

=

= exp(− 1
2σ2 (zj − µi)2)∑k

n=1 exp(− 1
2σ2 (zj − µn)2)

(B.7)

Esta ecuación completa el primer paso del algoritmo EM, en el que se define la función
Q a partir de los datos ocultos esperados. El segundo paso (maximización) consiste en
encontrar los valores(µ′1, . . . , µ

′
k) que maximizan la funciónQ así definida. En este caso,

arg max
h′
Q(h′ |h) =

= arg max
h′

m∑
j=1

(ln
1√

2πσ 2
− 1

2σ 2

k∑
i=1

E[xij ](zj − µ′i)2) =

= arg min
h′

k∑
i=1

m∑
j=1

E[xij ](zj − µ′i)2 (B.8)

Esto es, la hipótesis de máxima verosimilitud es la que minimiza la suma ponderada de
los errores al cuadrado, donde la contribución de cada instanciazj al error que defineµ′i está
ponderada porE[xij ]. Esta hipótesis se puede calcular de forma analítica con la siguiente
expresión

µj ← 1

m

m∑
j=1

E[xij ]zj . (B.9)



Apéndice C

Generación de trayectorias robustas
mediante algoritmos genéticos

Este apéndice y el siguiente presentan trabajos previos al desarrollo del cuerpo central de la
tesis, relacionados con técnicas de navegación local. Estos trabajos dieron lugar a publica-
ciones (Gallardo, Colomina, Flórez, Arques, Company, y Rizo 1997; Gallardo, Colomina,
Flórez, y Rizo 1998) y sirvieron para plantear algunas preguntas de las que ha surgido la
tesis.

C.1 Introducción

El problema de la generación de un camino a seguir por un robot móvil para llegar de una
posición inicial a otra final evitando los obstáculos del entorno ha sido tratado ampliamente
en la literatura (Latombe 1991), encontrándose soluciones eficientes tanto mediante técnicas
algorítmicas como mediante técnicas evolutivas (Xiao, Michalewicz, Zhang, y Trojanowski
1997; Doyle 1995; Rendas y W.Tetenoire 1997; Ahuactzin, Talbi, Bessiere, y Mazer 1992).
La mayor parte de estos enfoques resuelven el problema en el espacio de configuraciones
del robot (definido normalmente por su posiciónx, y y su orientaciónθ ). En ese caso la
solución es una secuencia continua de configuraciones espaciales, esto es, una trayectoria
en el plano que no colisiona con los obstáculos y que conecta el punto inicial con el punto
final. Sin embargo, una trayectoria espacial no resuelve directamente el problema de mover
el robot, ya que le falta una ley temporal asociada a la misma (distintas velocidades lineales
y angulares pueden generar la misma trayectoria espacial).

Para resolver completamente el problema hay que planificar una secuencia de velocida-
des, realizando entonces la búsqueda no en el espacio de configuraciones sino en el espacio
de velocidades (en el caso de robotssynchro-drivecomo el que se utiliza en este trabajo,
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estas velocidades son la velocidad linealv y la velocidad angularω). En este nuevo espacio,
los obstáculos ya no son definibles geométricamente, por lo que se limita mucho el tipo de
técnicas algorítmicas que pueden aplicarse. Adicionalmente, en muchos casos es necesario
imponer restricciones que reducen localmente la dimensionalidad del espacio de velocidades
del robot. Por ejemplo, un robot que se mueve con las características de un automóvil, como
es el presente caso, no puede moverse lateralmente y tiene limitado el ángulo de giro. A
este problema se le denomina planificación de trayectorias con restricciones cinemáticas no
holonómicas y su solución es materia de investigación actual en el campo de la robótica y el
control (Latombe 1991; Divelbiss y Wen 1994; Chatila, Khatib, Jaouni, y Laumond 1997).
Todas estas soluciones plantean dos importantes problemas:

1. Soluciones subóptimas: la mayor parte de las técnicas algorítmicas que resuelven el
problema de la búsqueda de trayectorias no holonómicas encuentranuna trayectoria,
pero no contemplan factores prácticos de eficiencia como el tiempo de la misma, su
regularidad, etc.

2. Robustez de la trayectoria: una vez calculada una trayectoria, ésta deberá ser ejecutada
por un robot real, lo que nos lleva directamente al problema de la incertidumbre en su
ejecución. Esta incertidumbre se debe a la inexactitud en la ejecución de las órdenes de
velocidad y a la inexactitud en la localización del robot por la incertidumbre asociada
a la odometría. Esta incertidumbre es acumulativa con lo que cuanto más larga sea la
trayectoria, más se sufrirá.

Debido a ello, las trayectorias que se obtengan como solución deben ser robustas, en
el sentido de que la introducción en ellas de pequeños cambios no debe variar mucho
el resultado final. Esta característica de robustez no es garantizada por ninguna de las
aproximaciones que se utilizan para resolver el problema.

En este trabajo se presenta una solución a la planificación de trayectorias no holonó-
micas mediante computación evolutiva que contempla los dos problemas arriba planteados.
La búsqueda de la mejor trayectoria para unos criterios dados se realizará de forma natural
introduciendo esos criterios en la función de bondad, y la robustez de la trayectoria se garan-
tizará introduciendo en esta función de bondad un término de ruido gausiano acumulativo y
adaptando el método de búsqueda genética para que esto sea contemplado.

C.2 Planteamiento del problema

Esta sección describe las ecuaciones de movimiento fundamentales de un robotsynchro-
drive, definiendo la componente dinámica del control del mismo. Las trayectorias a seguir
por el robot y las funciones de evaluación asociadas a los mismos se basan en estas ecuaciones.
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Las variables de estado del robot móvil son su posición (x, y), su orientación (θ ) y
sus velocidades angular y lineal (ω y v, respectivamente). Consideraremos constantes las
aceleraciones angulares y lineales (aω y av). Estas aceleraciones tienden a no ser demasiado
altas en implementaciones reales de robots móviles, para no someter a la estructura mecánica
del robot a tensiones excesivas y para conseguir movimientos suaves. Debido a ello estas
aceleraciones no deben ser despreciadas si se quieren conseguir resultados aplicables a la
realidad.

El control del robot lo modelamos con las variablescv y cω que toman valores discretos
{−1,0,1} y definen si, para un instante de tiempo determinado, las velocidades deben ser
decrementadas, no modificadas o incrementadas. El incremento de estas velocidades vendrá
dado por la constante de aceleración.

ω(tn) = ω(t0)+
∫ tn

t0

aωcω(t)dt (C.1)

v(tn) = v(t0)+
∫ tn

t0

avcv(t)dt (C.2)

La dinámica de las variables de posición y dirección angular del robot se modela con las
siguientes ecuaciones.

θ(tn) = θ(t0)+
∫ tn

t0

ω(t)dt (C.3)

x(tn) = x(t0)+
∫ tn

t0

v(t) cosθ(t)dt (C.4)

y(tn) = y(t0)+
∫ tn

t0

v(t) sinθ(t)dt (C.5)

Las ecuaciones anteriores pueden simplificarse si se asume que el robot debe controlarse
de forma discreta, con intervalos de control de tiempo4t . Suponemos, pues, constantes las
variables de controlcv y cω para estos intervalos de tiempo. De esta forma se simplifican las
anteriores ecuaciones.

x(tn) = x(t0)+
n−1∑
i=0

∫ ti+4t

ti

(v(ti)+4tti v) cos(θ(ti)+4tti θ)dt (C.6)

donde
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4tti v = avcv(t)(t − ti) (C.7)

4ttiω = ω(ti)cω(ti)(t − ti)+ 1

2
aω(ti)cω(ti)(t − ti)2 (C.8)

Por ello el problema de encontrar una trayectoria en un espacio de velocidades puede
formularse como la búsqueda de una secuencia temporal de valores para las órdenescv y cω

〈(cvt0 , cωt0), (cvt1 , cωt1), . . . , (cvtn , cωtn)〉
que haga moverse el robot desde la configuración inicial(x = x0, y = y0, θ = θ0, v =

0, ω = 0, t = t0) hasta la posición objetivo(x = xobj, y = yobj, v = 0, ω = 0, t = tn). Hay
que hacer notar que el robot debe terminar en una configuración estática y que no imponemos
ninguna restricción a la orientación final.

Además, como restricciones adicionales, buscamos quetn sea el mínimo posible y que
la trayectoria resultante sea robusta, en el sentido comentado anteriormente.

C.3 Generación de trayectorias mediante algoritmos genéticos

En el problema de la generación de trayectorias óptimas, la elección del uso de algoritmos
genéticos (Back, Fogel, y Michalewicz 1997) se fundamenta en dos razones principales:
en primer lugar, es una técnica adecuada para realizar búsquedas en espacios de dimensión
elevada, como en este caso. Por otro lado, el método impone pocas restricciones de tipo
matemático en la forma de la función a optimizar, de tal manera que es aplicable a la
generación de trayectorias para cualquier tipo de comportamiento (evitar obstáculos, seguir
paredes, etc.).

C.3.1 Representación de las soluciones

Cada individuo de la población representará una trayectoria que parte del punto origen e
intenta llegar al destino. Como el objetivo no es únicamente obtener una secuencia de
coordenadas espaciales que conecte el punto origen con el punto de destino, sino además
encontrar cuál es la velocidad lineal y angular que el robot debe tomar en cada punto del
camino, un cromosoma estará formado por una serie de velocidades lineales y angulares de
referencia para el robot en instantes de tiempo sucesivos. Así, una trayectoria en el espacio
de velocidades se codificará como un vector de pares de valores parav y w:

〈(vt1, wt1), (vt2, wt2), . . . , (vtn, wtn)〉
Esta secuencia de velocidades de referencia se transformará para su evaluación en una

secuencia de órdenes de cambio de velocidad como los descritos en la sección C.2.
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C.3.2 Función de evaluación

La función de evaluación mide la optimalidad de cada trayectoria en términos de la distancia
de la posición final del robot a la posición objetivo y el tiempo invertido en llegar hasta ella:

f = αdobj(tn, σ )+ βtn
donde:

• dobj(t, σ ) =
√
(χ(t, σ )− xobj)

2+ (ψ(t, σ )− yobj)
2+ ν(t, σ )2+ ϕ(t, σ )2 es la dis-

tancia euclídea en el espacio(x, y, v,w) entre el objetivo y el punto final de la trayec-
toria.

• tn es el tiempo invertido en recorrer la misma.

• α, β son coeficientes de ponderación que miden la importancia relativa de cada uno
de los factores.

Para asegurar que los individuos que chocan siempre tienen una adecuación peor (mayor)
que los que llegan al final sin chocar, se le suma al valor de su función de adecuación el valor
de la adecuación del peor de los individuos que no ha chocado en esa generación.

Las funcionesν(t, σ ) y ϕ(t, σ ) representan las velocidades lineal y angular obtenidas
introduciendo un ruido gausiano de desviación típicaσ en las ecuaciones (C.1) y (C.2),
quedando las mismas como:

ϕ(tn, σ ) = ω(t0)+
∫ tn

t0

(aωcω(t)+ ρ(t, σ ))dt (C.9)

ν(tn, σ ) = v(t0)+
∫ tn

t0

(avcv(t)+ ρ(t, σ ))dt (C.10)

Las funcionesχ(t, σ ) y ψ(t, σ ) son los valores dex e y que se obtienen con estas
velocidades. El término de ruidoρ(t, σ )modela la incertidumbre en las velocidades y en las
posiciones que se produciría al ejecutar la secuencia de órdenes codificados en la trayectoria
en un robot real.

Desde el punto de vista de la función de evaluación esta incertidumbre se traduce en
que un cromosoma no tiene asociado un único valor de adecuación. Por ello, la estrategia
adoptada consiste en evaluarN veces cada individuo y tomar como su valor de adecuación el
máximo (el peor) de los valores obtenidos, para asegurar que se promueven las trayectorias
robustas. Para impedir que la introducción de ruido mejore accidentalmente trayectorias que
de otro modo obtendrían peor valoración, cada individuo se evalúa además suponiendo la
inexistencia de ruido.
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(a) (b)

Figura C.1: Resultados sin ruido para distintos entornos.

C.3.3 Operadores genéticos

• Cruce: este operador combina las velocidades de referencia de dos trayectorias. Para
ello se calcula de manera aleatoria un punto de cruce independiente para cada uno de
los cromosomas y se intercambia el material genético que queda a la derecha de los
respectivos puntos de cruce. Al ser el punto de cruce distinto para cada uno de los
"padres" este método da lugar a individuos de longitud variable. Esto permite que la
longitud de la trayectoria vaya creciendo en las sucesivas generaciones y el robot se
vaya aproximando al punto de destino.

• Mutación: cada mutación consiste en sumar un valor aleatorio procedente de una
distribución normal de media 0 y varianza 5 metros por segundo (o 5 grados por
segundo en el caso de velocidades angulares) a una de las velocidades de referencia
que componen el cromosoma.



C.4. RESULTADOS 161

(a) (b)

Figura C.2: Resultados para el entornopasillo.

C.4 Resultados

C.4.1 Resultados en distintos entornos sin ruido

En la figura C.1 pueden verse dos trayectorias generadas por el algoritmo genético en dis-
tintos entornos, ambas sin aplicar ningún término de ruido a la función de evaluación. Para
obtenerlas se han utilizado los siguientes parámetros: número de individuosm = 100, nú-
mero de generacionesn = 100, probabilidad de crucepc = 0.75 y probabilidad de mutacion
pm = 0.01.

Hay que hacer notar que las trayectorias resultantes alcanzan velocidades considerables
que pasan demasiado cerca de los obstáculos. Una ejecución de alguna de ellas en un robot
real terminaría, probablemente, en una situación de colisión con alguno de ellos.

C.4.2 Comparación de resultados con y sin ruido

Con el objeto de comprobar los efectos que produce la introducción de ruido en las ca-
racterísticas de las trayectorias obtenidas mediante el algoritmo evolutivo, se han realizado
distintas pruebas en un mismo entorno (figura C.2), manteniendo constantes los parámetros
del algoritmo (los mismos que en el apartado anterior) y variando únicamente la desviación
estándarσ del ruido gausiano generado. El promedio de los resultados obtenidos tras 20
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ejecuciones del algoritmo con cada nivel de ruido se muestra en la tabla C.1. El parámetro
Dmin representa la distancia mínima del robot a los objetos del entorno a lo largo de toda la
trayectoria, mientras queVmed es la velocidad lineal media del robot.

Como puede observarse, la presencia de ruido fuerza a que las trayectorias se alejen a
una mayor distancia de los objetos. Las trayectorias sin ruido consiguen una mejor velocidad
promedio al no verse sometidas a restricciones de distancia (figura C.2), aunque este aspecto
se ve ampliamente compensado al utilizar ruido, ya que éstas son más seguras de cara a su
ejecución en un robot real.

Parámetro Nivel de ruido(σ )
0.0 0.04 0.1

Dmin(cm) 38.2 39.8 43.8
Vmed(cm/s) 51.31 50.92 46.4

Tabla C.1: Resultados obtenidos para el entornopasillo

C.5 Conclusiones

Se ha presentado una solución al problema de generación de trayectorias robustas en el
espacio de velocidades de un robot móvil mediante algoritmos genéticos. Los resultados
obtenidos son correctos y se mejora la robustez de las trayectorias resultantes con respecto
a las de otros métodos. Para ello se ha utilizado en el algoritmo genético una función de
evaluación que incorpora un término de ruido acumulativo y se ha adaptado este algoritmo
para que sea capaz de encontrar una solución subóptima y robusta que satisfaga esta función
de evaluación.

Como trabajos futuros nos planteamos modificar la función de evaluación para generar
diferentes trayectorias que correspondan a esquemas de comportamiento local, como es el
seguimiento de paredes, o la navegación por el centro del pasillo, con objeto de utilizar estas
trayectorias obtenidas como muestras de aprendizaje para la generación de un controlador
local que responda a estos esquemas. También estamos estudiando otras alternativas de co-
dificación de las soluciones que permita obtener mejores resultados en entornos con mínimos
locales pronunciados.



Apéndice D

Aprendizaje de conductas locales de
navegación

D.1 Introducción

Existen dos tipos básicos de enfoques para controlar la navegación de un robot móvil: téc-
nicas globales y locales. En las técnicas globales, como son los métodos geométricos, la
programación dinámica o los métodos de campo de potencial (ver en (Latombe 1991) resu-
men y referencias complementarias) se asume totalmente conocida la descripción geométrica
del entorno en el que se va a mover el robot. Se trata de métodos potentes y eficaces para
generar tanto trayectorias a seguir como secuencias de comandos a ejecutar. Son métodos
usados para el control de robots que trabajan en entornos sin ninguna variabilidad y que rea-
lizan tareas repetitivas en las que se conocen en todo momento el valor de todas sus variables
de estado.

Los métodos locales o reactivos, por el contrario, consideran que el robot va a moverse en
un entorno no conocido a priori y proporcionan unas conductas estándar para reaccionar ante
lecturas de los sensores del robot (evitar obstáculo, seguir pared, entrar en puerta, alinearse
con objeto, etc.). Estas conductas (oesquemasen la terminología de Arkin (Arkin 1990))
son aplicables en gran número de entornos distintos y se suelen usar junto con un control de
alto nivel que se encarga de secuenciarlas. Este tipo de control es el que vamos a utilizar en
el presente trabajo.

D.1.1 Técnicas previas para el control local

Entre las propuestas de control local, cabe destacar el enfoque delhistograma de campo
vectorial(Borenstein y Korem 1991), el método de velocidad-curvatura (Simmons 1996), el
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Método de control local Esquemas

Histograma de campo de potencialavanzar-evitando-obstáculos
ir-a-objetivo
entrar-por-puerta

Velocidad-Curvatura avanzar-evitando-obstáculos
ir-a-objetivo

Ventana Dinámica avanzar-evitando-obstáculos
ir-a-objetivo

Esquemas motores esquemas configurables

Tabla D.1: Esquemas de actuación susceptibles de ser implementados con cada uno de los
métodos de control local. Ver en el texto principal las referencias correspondientes a cada
uno de los métodos.

método de ventana dinámica (D.Fox, Burgard, y Thrun 1997) y el método del propio Arkin
de esquemas motores (Arkin 1989).

En la tabla D.1 se comparan el tipo de esquemas de conducta susceptibles de ser imple-
mentados usando cada uno de estos enfoques. El enfoque de esquemas motores, pese a ser
el más genérico, es muy complejo de llevar a la práctica por el gran número de parámetros
que deben ser ajustados en las ecuaciones de control del robot. El mismo problema plantea
el enfoque del histograma de campo de potencial. Un problema añadido de ambos métodos
es que obtienen los comandos del robot en dos fases separadas. En la primera fase se obtiene
la dirección objetivo en la que debe moverse el robot. En la segunda fase se generan los
comandos de modificación de las velocidades lineales y angulares necesarios para conducir
al robot en la dirección deseada. Este enfoque sólo es factible si consideramos que las ace-
leraciones aplicables al robot son infinitas y el robot puede realizar de forma instantánea los
incrementos de velocidades. Sin embargo, la realidad es que las aceleraciones usadas en la
navegación de robots móviles debe ser baja para obtener trayectorias suaves y no forzar a la
estructura mecánica del robot a tensiones excesivas.

Por otra parte, los enfoques de Simmons y Fox han demostrado ser capaces de controlar
con éxito robots móviles que actuan en entornos de oficina con gran cantidad de obstáculos
y personas en movimiento (una universidad en el primer caso, y un museo en el segundo).
Sin embargo, se trata de propuestas difícilmente generalizables a otro tipo de esquemas de
conducta distintos de la evitación de obstáculos, como puede ser el seguimiento de una pared,
la localización de esquinas o la localización y entrada en puertas abiertas.

Hay que hacer notar también que en todos estos enfoques se trabaja con información
proporcionada por sensores de rango de baja densidad y limitado alcance, como son los
ultrasonidos. Esto provoca, entre otros, el problema de ambigüedad en la percepción deno-
minadoperceptual aliasing, en el que situaciones del robot distintas, en las que se deberían
tomar acciones también distintas, se solapan en una misma percepción.
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Figura D.1: Una muestra del simulador sobre el que se ha realizado la experimentación del
artículo. En la parte inferior de la figura se incluye el mapa de profundidad captado por el
robot. Tonos de gris oscuros corresponden con lecturas de profundidad cercanas.

D.1.2 Control local basado en reconocimiento estadístico de situaciones

En línea con las propuestas de Arkin y Chapman (Chapman 1991), la acción a ejecutar
vendrá indexada por el esquema de conducta activo en ese momento y por la situación del
entorno percibida por el robot. En la propuesta que presentamos en este trabajo formulamos
el problema del control local de un robot móvil como un problema de reconocimiento de
situaciones. Asociado a cada uno de los esquemas de actuación definimos un conjunto
de acciones aplicables y aprendemos las situaciones de percepción en las que esas deben
aplicarse.

Para obtener muestras de aprendizaje de un funcionamiento correcto del esquema opti-
mizamos una función que considera la trayectoria seguida por el robot, tanto en el espacio
cartesiano como en el espacio de velocidades lineales y angulares, y que premia trayectorias
consistentes con el esquema. Por ejemplo, para un esquemaseguir-pared considera-
mos que la distancia cartesiana a la pared debe ser pequeña y uniforme, premiando aquellas
trayectorias con mayores velocidades lineales. Dado que el espacio de búsqueda es enorme,
y que la función a optimizar no es susceptible de ser diferenciada, utilizamos para su reso-
lución la técnica de algoritmos genéticos, diseñando una codificación de las trayectorias del
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robot y un método de cruzamiento que han demostrado tener una alta efectividad.
A partir de las trayectorias obtenidas se generan todas las parejas de percepción y acción

que el robot ha ido encontrando en la misma, y se agrupan en situaciones percibidas para un
mismo tipo de acción.

La dimensionalidad del espacio de percepción debe ser alta para poder establecer di-
ferencias entre las pautas de percepción asociadas a distintos esquemas de conducta. Por
ello utilizamos como entrada percivida el campo denso de profundidad existente frente al
robot móvil. Aunque hemos desarrollado el trabajo sobre un simulador (ver figura D.1),
existen técnicas que permiten obtener este campo de profundidad en tiempo real mediante
técnicas actuales de visión artificial (ver (Kanade, Kano, Kimura, Yoshida, y Oda 1995)
como ejemplo de utilización de visión estéreo).

Una forma de caracterizar estas situaciones es utilizar un técnica estadística estándar
como es el Análisis de Componentes Principales (Fukunaga 1990) para reducir la dimen-
sionalidad de las muestras de aprendizaje correspondientes a cada situación. Veremos que
el análisis de componentes principales permite reducir los mapas densos de profundidad a
unos pocos parámetros en los que se mantienen la identidad propia de cada situación y que
pueden utilizarse de forma efectiva para el reconocimiento.

D.2 Aprendizaje y clasificación de situaciones

Una vez se han generado un conjunto de trayectorias correctas para el esquema que se está
aprendiendo, utilizando el método propuesto en el apéndice anterior, se trata de caracterizar
las situaciones en las que el robot se va a encontrar cuando evolucione siguiendo ese esquema.

Modelamos el estado en el que puede encontrarse un robot móvil evolucionando por
un entorno mediante: 1) un mapa de denso de profundidad observado por el robotd(θ)

y 2) las velocidades lineales y angulares del mismo (v y ω). Definimos un mapa denso
de profundidad como el vectord(θ), que nos indica la distancia a la que se encuentra el
obstáculo más cercano en la orientaciónθ (considerando como 0 la orientación frontal).
La obtención de estos mapas de profundidad es inmediata en el simulador. Los límites del
ánguloθ vienen dados por las características de la cámara. Para el presente artículo hemos
variadoθ entre -45 y 45 grados.

A partir de las trayectorias generadas por algoritmo genéticos se generan las estados
que ha encontrado el robot en su evolución siguiendo dichas trayectorias. Estos estados
se agrupan en conjuntos de situaciones prototipo que son aprendidos y reconocidos de la
forma que se explica a continuación. Un ejemplo de campos de profundidad asociado a
una situación determinada (en concreto, velocidad lineal del robot entre 60 y 70 cm/s) se
presenta en la figura D.2. Cada fila de la figura corresponde al mapa de profundidad en un
instante de tiempo.
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Figura D.2: Ejemplo del conjunto de muestras de entrenamiento de la situación corres-
pondiente av60 (v ∈ [60cm/s,70cm/s]). Cada fila de la figura corresponde al mapa de
profundidad en un instante de tiempo.

D.2.1 Análisis de Componentes Principales

El análisis de componentes principales ha sido utilizado con éxito recientemente en la co-
munidad de visión artificial para representar imágenes de caras humanas (Sirovich y Kirby
1997) y para reconocer imágenes de caras (Turk y Pentland 1991). Con esta técnica se
calculan los autovectores del conjunto de muestras de alta dimensionalidad y son usados
como base ortogonal para representar cada una de las muestras individuales. Estos autovec-
tores constituyen la dimensión de un subespacio de muestras, denominado elautoespacio,
en el que las muestras se pueden representar de forma compacta. Utilizaremos este enfoque
aplicándolo al conjunto de mapas de profundidad de cada una de las situaciones.

Representamos, pues, esta distribución de mapas de profundidad mediante una función
de perturbación alrededor de un mapa de profundidad medio correspondiente a la situación:

d(θ) = d0(θ)+ ρ(θ) (D.1)

dondeρ(θ ) son pequeñas fluctuacionesρ/d0 < 1 que capturan la identidad de cada
una de las muestras. El mapa de profundidad medio se calcula a partir de las muestras de
entrenamiento correspondientes a la situación

d0(θ) = 1

N

n∑
i=1

di(θ) (D.2)

Para representarρ(θ) de cada situación realizamos un análisis de las componentes prin-
cipales y se expanden las fluctuaciones en térmimos de un conjunto de autovectores9l
extraidos a partir de cada distribución siguiendo el procedimiento estándar (Fukunaga 1990).

d(θ) = d0(θ)+
∑
l

al9l(θ) (D.3)

De esta forma, un mapa denso de profundidad correspondiente a una situación deter-
minada pasa a representarse como una combinación lineal de los modos de variación más



168 APÉNDICE D. APRENDIZAJE DE CONDUCTAS LOCALES DE NAVEGACIÓN

importantes (9l) sumado al mapa de profundidad medio. Por ello, considerando el nuevo
espacio paramétrico definido por los modos de variación principales, un mapa de profundi-
dad pasa a representarse por el vectorb = (b1, . . . , bl) correspondiente a las coordenadas
en el nuevo espacio paramétrico, reduciéndose considerablemente la dimensionalidad de la
distribución. Los autovaloresλl asociados a cada uno de los autovectores representan la
varianza de cada uno de los modos de variación principales.

D.2.2 Clasificación

La proyecciónb de un mapa de profundidadd en un autoespacioPl se obtiene mediante la
ecuación

b = PTl (d − d0), (D.4)

siendoPl = [91, . . . , 9l] la matriz con losl primeros autovectores.
Una métrica muy usada para cuantificar la pertenencia de una muestra a una distribu-

ción es la distancia de Mahalanobis, que mide la distancia de la muestra al centro de una
distribución, ponderada por la varianza en cada uno de las dimensiones del espacio:DMah:

DMah(b, λ) =
l∑

k=1

(
b2
k

λk

)
(D.5)

El criterio usado para medir a que situación pertenece un mapa de profundidad percibido
es escoger aquella situación cuyo autoespacio minimiza la distancia de Mahalanobis con el
mapa de profundidad percibido:

situación actual= minti=0DMah(bi, λi), (D.6)

siendot el numero de situaciones aprendidas,bi la proyección del mapa de profundidad
actual en el autoespacio correspondiente a la situacióni y λi los autovalores de la situación
i.

D.3 Resultados

Se ha realizado una implementación del esquemaavanzar-evitando-obstáculos
siguiendo la propuesta del trabajo. Para ello se han generado comportamientos correspon-
dientes a ese esquema en distintos entornos aleatorios.

A partir de estas trayectorias hemos considerado 8 situaciones correspondientes a velo-
cidades lineales (v10, v20, . . . , v80), convi agrupando las velocidades lineales en el rango (i

cm/s,i + 10 cm/s), y 3 situaciones correspondientes a velocidades angulares (ω−10,ω0,ω10),
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Figura D.3: Ejemplo del conjunto de muestras de entrenamiento de las situaciones corres-
pondiente av50, v60 y v70.

conωi agrupando las velocidades angulares en el rango (i − 5 grados/s,i + 5 grados/s). Se
han obtenido muestras de los mapas de profundidad percibidos por el robot en cada una de
estas situaciones (en la figura D.2 se puede observar un ejemplo de los mapas de profundidad
asociados las situacionesv50,v60 y v70).

Se ha realizado un análisis de componentes principales de las muestras correspondientes
a cada una de las situaciones, obteniéndose el autoespacio asociado a cada una de ellas. En la
figura D.4 se muestran los mapas de profundidad medios correspondientes a las situaciones
v10, . . . , v80. En ellos se representa la distancia media (en centímetros) a la que se encuentran
obstáculos (desde -45 grados hasta 45 grados en dirección frontal) cuando el robot se movía a
la velocidad correspondiente a cada una de las situaciones. Se puede ver que es coherente con
lo esperado: a velocidades más altas el robot se encuentra los obstáculos a mayor distancia.

Por último, la figura D.5 muestra un ejemplo de evolución del robot utilizando el re-
conocimiento de situaciones propuesto anteriormente. Cada 0,2 segundos se realiza una
lectura del mapa de profundidad del entorno, se proyecta esa lectura sobre los autoespacios
correspondientes a cada una de las situaciones aprendidas y se obtiene la velocidad lineal
y angular a la que debería estar moviéndose el móvil (aquellas con las que se minimiza su
distancia de Mahalanobis), modificándose las velocidades actuales consecuentemente.

D.4 Conclusiones

Se ha presentado un enfoque con el que es posible aprender automáticamente esquemas loca-
les de conducta que guían la navegación de un robot móvil, aplicándose al ejemplo concreto
de avanzar evitando obstáculos. El método se puede resumir en: 1) generación off-line de
trayectorias consistentes con el esquema de navegación, 2) aprendizaje de las situaciones
de percepción (mapas densos de profundidad) que el robot se ha encontrado cuando estaba
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Figura D.4: Mapas de profundidad medios correspondientes a cada una de las distintas
situaciones de velocidad lineal.

Figura D.5: Ejemplo de trayectoria seguida por el robot aplicando el algoritmo de control
basado en reconocimiento estadístico de situaciones.
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evolucionando en el entorno, agrupados por situaciones discretas (robot moviéndose entre
10 y 20 cm/s, robot moviéndose entre 20 y 30 cm/s, etc.) y 3) control del robot basado en el
reconocimiento de situaciones.

El primer aspecto se ha llevado a cabo utilizando técnicas de algoritmos genéticos, el
segundo con un análisis de componentes principales y el tercero utilizando las distancias a
las distribuciones aprendidas.

Como trabajo futuro, estamos comenzando a caracterizar otros esquemas utilizando estas
técnicas (comoseguir-pared o entrar-en-puerta ) al tiempo que prentendemos
comprobar la validez del planteamiento en un robot real.
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