Estimacion bayesiana de caracteristicas en robots moviles
mediante muestreo de la densidad a posteriori
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Resumen de una localizacién a otra [11]. Las caracteristicas

se suelen extraer del entorno a partir de sensores
La obtencioén de caracteristicas estables y robustsultrasonidos, elementos estandar de captacion
del entorno en un robot mévil es un elemento clade informacion en la robotica movil. Estos sen-
para la extraccién autbnoma de mapas del entorgores se utilizan normalmente en anillos de 12 o
la localizacion en el mismo o la navegacion de urgat transductores distribuidos de forma equidistante
localizacion a otra. alrededor del robot.

Proponemos en este trabajo la estimacion y el| 5 nopularidad del sonar se debe fundamental-
seguimiento de caracteristicas topolégicas de formante a que se trata de un sensor de muy bajo coste,
robustay estable mediante la utilizacion de técnicgs consumo es muy pequefio y el procesamiento
de muestreo de la funcion de densidad a posteriQfje se realiza a su sefial es muy sencillo, haciendo
a partir de la formulacion de un modelo probabjgsiple una respuesta casi inmediata y permitiendo
listico del sensor y del movimiento del robot. ESjna reaccion rapida del robot.

tas técnicas de muestreo permiten representar ungin embargo, frente a estas ventajas, el sonar

densidad arbitraria de un espacio paramétrico cc%n- 2 ) )
. . . tlene como principal inconveniente el elevado nivel
tinuo, frente al filtro de Kalman, que necesaria:

. S . (Fe ruido e incertidumbre presente en sus lecturas,
mente se aplica a distribuciones gaussianas, o

. =bido a diversos factores [7].
redes bayesianas temporales, en las que es nece-

sario definir un conjunto discreto de estados. Existe una amplia coleccién de trabajos en los
Por Gltimo, comprobamos los resultados sobf&l€ S€ proponen métodos para filtrar los resultados
lecturas de sonar obtenidas en entornos simulad@dienidos por estos sensores y obtener caracteristi-
en distintas condiciones de ruido y variabilidad. ¢&s geometricas elementales [3, 1, 12]. Sin embar-
Palabras claves estimacién y seguimiento tem-9© las caracter|st|ca§ obtemdas_ en todos ellos son
poral, seguimiento no gaussiano, muestreo de d8MY locales, como aristas, esquinas 0 segmentos, y

sidad de probabilidad, caracteristicas geométric¥@ Propia localidad hace que sean muy sensibles
estables y robustas, robots méviles. alruido, poco robustas y poco estables. Esto ultimo

se acentla en entornos dindmicos y variables, del
tipo en los que suelen evolucionar estos robots.

1 Introduccidon Frente a este planteamiento local aparece como
alternativa la utilizacién de enfoques bayesianos en
La obtencién de caracteristicas estables y robusiasque se va acumulando en el tiempo la evidencia
del entorno en un robot moévil es el paso previasociada a la caracteristica. Aunque este enfoque
para una posterior extraccién autbnoma de mapgessido aplicado con éxito desde los primeros mo-
del entorno, localizacién en el mismo o navegacidnentos de investigacién en el campo de la roboti-
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Figura 2: Estimacién bayesiana temporal.

apriori p(x) utilizando unos datas[6]. Aplicando
Figura 1. Caracteristicas topologicas usadas ereste modelo genérico al problema que tratamos en
trabajo: pasillos y finales de pasillo. elarticulo, el vectar representa la parametrizacion
de una caracteristica a buscar en el entorno (pasillo,
final de pasillo, etc.) y los datasrepresentan las
ca movil [4], es ahora cuando se ha despertado |dBtyras del sonar.
gran interés en su uso para aplicaciones de mayopara estimax a partir dez es necesario cono-
alcance [14, 2, 5, 15, 10]. En esta linea, nueger |a distribucion condicionat(z|x) que mide la
tro trabajo se basa en caracteristicas topol6giGagosimilitudde que unas lecturascorrespondan
de mas alto nivel, como son pasillos o finales dgyn hipotético objeta. La densidad a posteriori
pasillo (ver figura 1). Estas caracteristicas se €¥(x|z) representa todo el conocimiento sobigue
traen de los datos del sonar utilizando un enfoqg@ede ser deducido a partir de los datos obtenidos.

bayesiano que presentamos en la siguiente secCp&ta densidad se calcula utilizando laregla de bayes
Esta metodologia es genérica y permite ser aplica-

daa otro tipo de carapteristicas topoldgicas, como p(x|z) = ap(zlx) p(x) (1)
conexiones entre pasillos, etc. .

En concreto, el nicleo de la propuesta se beg%nde“ es una constante de normalizacién inde-
en la utilizacién de técnicas iterativas de muestr@§ndiente de.
para estimar la densidad a posteriori de estas car- _ _ _
acteristicas topoldgicas. Estas técnicas permi2ril  Estimacion bayesiana temporal

representar la densidad de probabilidad de forrEa e _ .
a version dinamica del planteamiento bayesiano

explicita, mediante un conjunters, mo, ..., my) one que tenemos una secuencia-delecturas
de muestras extraidas de dicha funcién de probaZJti']—peI tie?n - ( ) que han si
lidad. Para obtener estas muestras, utilizaremos €l PE—1 = (21,22,...,2-1)

algoritmo CONDENSATION9], una version del ﬂggﬁgﬁggfa%;&ewuc(lgn ia objeicn:uyga
H H —1 = 1, X2y ooy X—1)-
algoritmo de rechaz{il3] aplicada al muestreo de . dinémica de dicho objeto ha sido producida

distribuciones a posteriori. Presentamos este alié'ii . . S X
fitmo en la seccién 3. En la seccién 4 formulamdd’ Una secuencia de acciones también conocidas
en detalle el modelo dinamico del sistemay el m& -1 = (41,42, ..., di-1) (én nuestro caso cada
delo de verosimilitud. Por ultimo, en el apartado gcclona sera un va[or_ de vel_omdad linealy an-
analizamos los resultados de aplicar este enfoﬂ]’ga‘.rw del robot movil). La figura 2.1 representa

a la deteccion de caracteristicas obtenidas po L ficamente el proceso.

sonar en entornos con ruidosos y con abundant ara realizar una (_asym_auon temporal debemos
ogmular el modelo dinamico del sistema'y el mo-

I . T
variabilidad, comprobando que las caracteristic
’ I medida. En | iguien r
son estables y robustas. ge o de medida los siguie tes subapartados
presentamos las restricciones generales que deben
cumplir ambos y en la seccion 4 detallaremos su

2 Técnicas para la estimacion expresion para el caso del seguimiento de carac-
] teristicas del entorno a partir de datos del sonar.
bayesiana temporal

. - .2.1.1 Modelo dinamico
Un problema estandar en reconocimiento estadisti-

code patrones es encontrar un objeto parametriza&ianodelo dindAmico proporciona una expresion de
con el vector con unadistribucion de probabilidada probabilidad de un determinado estado a partir



de una secuencia de estados y acciones previas

p(X[|X[_1, a[_]_) (2) p(-xllzlv al) = alp(zllxl)p(x[|zl—lv al—l)? (7)

Asumimos que este modelo dinamico cumple Bendo
condicion de Markov

p(xslZi-1,8-1) =

L. dé pxelxi—1, a—1) p(x-11Z—1, &-1).  (8)
esto es que el nuevo estado depende Unicamente del,_;

estado y de la accidn anterior. Asumimos también

que este modelo es estacionario, esto es que no dé=Stas expresiones son el equivalente temporal a
nigdegla de Bayes y determina de forma iterativa la

pende del instante de tiempo, por lo que deberemB<®! o - e e
formular mas adelante la expresipt’|x, a). dlstnpuqon de probabilidad a poste,npn en fu_ngon
de laultimalecturadel sensgr_q, la Gltima accion
a;_1, el modelo dindmice (x'|x, a), el modelo de
sensolp(z|x) y la probabilidad a posteriori efectiva
Suponemos que las observaciongson con re- anterior.
specto al proceso dinamico, lo que se expresa proEl problema de estimar esta densidad a posteriori
babilisticamente como se ha venido resolviendo usualmente mediante el
filtro de Kalman o mediante las redes bayesianas
temporales.

P IX—1, &—1) = p(xslxi—1,ai-1),  (3)

2.1.2 Medidas

PZi—1, X |X—1, 8-1) =
P(xeXi—1, 8-1) p(Z—11X—1, &—1). (4) 2.2 Filtro de Kalman

También suponemos que son independientes emféiltro de Kalman se ha usado con gran éxito para
si, realizar una estimaciontemporal enlos casos enque
X €S un vector en un espacio de parametros contin-
-1 uo y la verosimilitudp(z|x) tiene una distribucion
P(Z—1I%—1, 1) = Hp(zl_m’ a), (5) 9aussiana. Este filtro estima de forma iterativa la
i1 media y la varianza de las en cada instante de

tiempo y esto sirve para caracterizar perfectamente
y que la observacion Gnicamente depende del estadistribucionp (x|z).

do, y no de la accion realizada La aplicacion del filtro de Kalman al seguimien-
to de caracteristicas del entorno es problemética,
p(zilxi, ai) = p(zilx;). (6) debido fundamentalmente al problema dés-

Suponemos, por (ltimo, que este modelo tambig}g del sensogue provoca que distintz_is configura-
es estacionario y que no depende del instante §i8"es del entorne produzcan parecidas lecturas
tiempo, quedando una densidad de probabiliddfl! Sensot. Esto hace que la densidadz|x) sea
p(z]x) que define la verosimilitud de unas lecturd§Ucho mas complicada que una gaussiana, sien-

dado una hipotética caracteristica del entorno y gi¢ €1 muchas ocasiones multimodal. Los entornos
detallaremos mas adelante dindmicos y el ruido en las lecturas tampoco son

bien soportados por esta técnica.

2.1.3 Propagacion de la probabilidad a poste- .
riori 2.3 Redes bayesianas temporales

Asumiendo las consideraciones anteriores, las redes bayesianas temporales se utilizan como
propagacién de la probabilidad a posteriori en laga alternativa al filtro de Kalman, ya que permiten
modelos de propagacion bayesiana temporal vieegresentar distribuciones de densidad arbitrarias.
dada por Para representar la distribucipix|z) se discretiza



el espacio de parametra@sen un conjunto de esta-3.1  Algoritmo CONDENSATION

dos y se utiliza la regla de bayes para propagar sus ] ]
probabilidades. El algoritmo CONDENSATION proporciona una

urgpresentaci(’)n explicita de la densidad a posteriori

se definen erX, y suponemos que en el instamtememaﬂte unconjunto dé muestragmy, ..., my)

se ha realizaco l lectuta después de realizar i 20 ORS8O SR BERCRR o T
acciona,, las probabilidades de los estadpse ttir de | mg tras del instante anterior dp
actualizan iterando la expresién apa € las muestras del Instante anterior y de

las nuevas mediciones del entorng § las nuevas
acciones recién ejecutadas por el rolagy.
Inicialmente, el conjunto de muestras se dis-
psi) < plzilsi) Z pGsilsj, a-)p(sy)  (9) tribuye uniformemente en el espacio de paramet-
sj€X rosX. Posteriormente, en cada instante de tiempo,
se actualizan la®v muestras de la siguiente for-
para todos log € X. DeSpUéS de actualizar Ia.$na_ Se escoge una muesﬂa con probabmdad
probabilidades asociadas a cada uno de los estagos, partir del conjunto de muestras anteriores. Es-

Si llamamoss; a cada uno de los estados q

éstas se normalizan para asegurar que ta muestra es una muestra correcta de la distribu-
cion p(x;_1|z—1,a,-1). A partir de ella se real-
Zp(sz') —1 (10) iza una proyecpién del mode!o del sistema segun
la acciona, realizada por el mismo, obteniendo la
nueva muestrang = p(xt|lx—1 = my,ar). Por

El problema fundamental de las redes bayesiandsmo  como probabilidad asociadana se cal-
es la necesidad de discretizar el espacio ggia sy verosimilitud con las lecturas realizadas,

parametros, lo que afade incertidumbre € it giante el modelo de probabilidad del sensor,

n mpleji ial (y temporal al re-
dL_lce una co pngad espacial _(y emporal al 1= _ (- v, = m;).
alizar la propagacion) exponencial con el numero

de parametros.

4 Modelo de movimiento y de

3 Estimacion por muestreo de Sensor
la densidad a posteriori Para aplicar cualquier propagacién temporal es
necesario formular correctamente tanto el modelo
Resumiendo el problema planteado en la seccidf accion del sistema como el modelo del sensor.
anterior, las redes bayesianas permiten estimar
probabilidades con distribuciones de densidad arbi- .,
traria, a costa de discretizar el espacio de param t-l Modelo dinamico del robot

rosque d_efinen las carac'_[eristicas que estamos S@é‘t’a seccion describe las ecuaciones de movimien-
iendo, mientras que el filtro de Kalman, por otrﬁ) fundamentales de un robsgnchro-drive mod-

parte, permite tratar parametros continuos, pegp . '« poSici6R(r), (1) y SU orientacim (¢)

Unicamente es capaz de representar diStribUCioﬂ%‘diante las siguientes ecuaciones
gaussianas.

La solucién que proponemos consiste en realizar

unmuestreale la distribucion a posteriori mediante In

el algoritmo CONDENSATION [9]. Este muestreo 0(tn) = 0(to) +ft w(t)dt (11)

proporciona un conjunto estable de estimaciones " °

(m1,mo, ..., my) de la caracteristica a detectar x(t,) = x(10) + / v(t) cosH(r)dt (12)
0

junto con las probabilidades asociadas a cada mues-
tra. Las muestras representan de forma fiable la n

probabilidad a posteriop (x; |z, a). Y(t) = y(to) +/ v(r) sind (n)dt (13)

fo



(I, 1o, ..., 12a).

El enfoque para el calculo de la verosimilitud ha
sido similar a las propuestas diconocimiento a
partir de sintesig8]. Se ha construido un modelo
realista del sensor de ultrasonidos, capaz de simu-
lar correctamente la mayor parte de caracteristicas
de las lecturas reales, incluyendo las que han si-
do despreciadas hasta el momento como fuentes
de error, como los mdltiples rebotes. Estos errores
no pueden modelarse correctamente suponiendo un
modelo gaussiano del ruido.

Para implementar el modelo se ha realizado una
modificacion del clasico algoritmo de trazado de
) ) y _rayos, adaptandolo a superficies 2D y al calculo
Figura 3: Simulacién de_ las lecturas de un anillgs |55 distancias de alcance [7]. Un ejemplo del
de sensores de ultrasonidos. resultado del algoritmo de simulacién puede verse
en la figura 3.

Las ecuaciones anteriores pueden simplificarse’ 2@ calcular la verosimilitug(z|.x) se simulan

si se asume que el robot se mueve de forma disc'f’éql‘)tet'c?s lecturas obtenidas por la c,iare}ctetrlstlca
ta, con intervalos de control de tiempa en los eénlaconfiguracion y Se comparan con las lecturas

que la velocidad lineal es y la angulare,. Es- reales, utilizando una mgdida de di;tanpia.
ta suposicion es asumible cuando los intervalos deFormaImente, la funcion de verosimilitud se ex-
muestreo de las velocidades y los datos del sonaffi§5& ¢OMo
es demasiado grande en comparacién con la veloci-
dad del movil. En nuestro caso, se han realiggdg(z — (1l ..., La)|x) = @190 (14)
todas las pruebas con el mévil simulado movién-
dose a 25 cm/s y se han tomado lecturas cada Os&ndd, las lecturas reales del sondgjas lecturas
segundos. simuladas producidas por la caracteristicaEn

La generacion de muestras @dx;,1|x, = |os experimentos posteriores, la funcidrse ha
x,a; = a) es directa a partir del modelo dinamicémplementado como una distancia euclidea entre
anterior. Solo hay que aplicar el cambio de posicidas posiciones finales de las lecturas.
y orientacion del robot sufrido tras sus movimientos
v; Y w; alos pardmetras que definen la caracteris-,
ticas. Ademas introducimos en la distribucion uﬁ

ruido gaussiano para modelar la incertidumbre Eﬁ

2= . . ra comprobar la técnica propuesta se han realiza-
la posicidn real del robot. Este ruido gaussiano §§una seeie de ex erimenF':ospen l0S entornos sim
fundamental a la hora de dotar al modelo de r P

bustez.

Resultados

ulados que aparecen en la figura 4. En todos los
experimentos el robot se mueve evitando obstacu-
los a una velocidad de 25 cm/s y realiza una lectura
4.2 Modelo del sensor de sensores cada 0.25 segundos. Cada vez que se
realiza una lectura se ejecuta un paso del algoritmo
El modelo del sensor nos proporciona la verosimiGONDENSATION. La velocidad del algoritmo es
itud de unas lecturas obtenidas en una hipotéti-aceptable, funcionando @4 del tiempo real con
ca configuracion del entorne. Las lecturax N = 300 muestras en un procesador Pentium II.
son distancias a los obstaculos mas proximos Euaturas optimizaciones del cédigo haran posible la
la direccion definida por los sensores de ultrajecucion del algoritmo en tiempo real.
sonidos distribuidos alrededor del robot. En nue- En los siguientes apartados veremos ejemplos
stros experimentos hemos utilizado una configdel funcionamiento del algoritmo en distintos ins-
racion de 24 sensores simulados, con lo gue tantes de tiempo. Dibujaremos las muestras gene-



Entorno 1 Entorno 2

Figura 4: Algunos de los entornos de prueba en los que se han realizado los experimentos. El entorno 1
consiste en un pasillo con dos obstaculos y el 2 un pasillo con mdltiples puertas.

radas por el algoritmo sobre el entorno real, y cagatorno se debe a que el robot no obtiene ninguna
muestra tendra un tono de gris proporcional a fectura del pasillo cuando pasa frente a las puertas.
probabilidad. El nimero de muestras de este experimento es el
mismo que el anterioN = 300). Enlainstantanea

1 se ven las muestras yainicializadas. De la instan-
tanea 1 ala 9 efobot pasa frente a diversas puertas,
En la figura 5 se puede observar el proceso de ian lo que las muestras han evolucionado segun el
cializacién del conjunto de muestras de la cara@odelo dinamico del robot, sin ser reforzadas por
teristicapasillo. Recordemos que cuanto méas oscigcturas del sonar. Sin embargo, cuando el robot
ra es la muestra mayor probabilidad asociada tiengelve a detectar el pasillo vemos como en las ins-
El namero de muestras utilizadas®¥s= 300. El tantaneas 10y 13 el algoritmo vuelve a reforzar las
tiempo de una instantanea a otra es de 1 segund@uestras correctas.

5.1 Inicializacion

5.2 Seguimiento de pasillos con obstag Conclusiones

culos

i . » Se ha presentado la aplicacion del algoritmo CON-
En la figura 6 se puede ver la continuacion de {5 NSATION al problema del seguimiento de car-
situacion anterior. Una vez centrado el conjunto d@aisticas topoldgicas a partir de datos de sensores
muestr_as aIrededor_ng_ pasillo real todas las mugg- ,jtrasonidos. Este algoritmo permite estimar
tras bajan en verosimilitud al pasar el robot frenfg,  gistribucion a posteriori arbitraria en un espa-
a un obstaculo (instantanea 8). En la instantangg ge parametros continuo, resolviendo las defi-
9, el ruido gaussiano del modelo de movimienigecias de los métodos empleados usualmente co-
genera algunas muestras de pasillos mas cercagpsson el filtro de Kalman o las redes bayesianas
al obstaculo, pero la media de la distribucion “t%mporales.
cambia de forma sensible. En las instantaneas 1&4 han mostrado resultados experimentales re-
y 11 el robot ha superado el obstaculo, vuelvenyg, , o5 sobre entornos simulados en los que se

realizarse lecturas rcilel _pasllllo rgl?l y Iald'St”bUC'OEbmprueba la robustez y estabilidad de las carac-
se mueve otra vez hacia el pasillo real. teristicas extraidas.

5.3 Seguimiento de finales de pasillos )
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Figura 7: Seguimiento de finales de pasillo moviéndose el robot en el entorno 2.
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