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Resumen

La obtención de características estables y robustas
del entorno en un robot móvil es un elemento clave
para la extracción autónoma de mapas del entorno,
la localización en el mismo o la navegación de una
localización a otra.

Proponemos en este trabajo la estimación y el
seguimiento de características topológicas de forma
robusta y estable mediante la utilización de técnicas
de muestreo de la función de densidad a posteriori,
a partir de la formulación de un modelo probabi-
lístico del sensor y del movimiento del robot. Es-
tas técnicas de muestreo permiten representar una
densidad arbitraria de un espacio paramétrico con-
tinuo, frente al filtro de Kalman, que necesaria-
mente se aplica a distribuciones gaussianas, o las
redes bayesianas temporales, en las que es nece-
sario definir un conjunto discreto de estados.

Por último, comprobamos los resultados sobre
lecturas de sonar obtenidas en entornos simulados,
en distintas condiciones de ruido y variabilidad.
Palabras claves: estimación y seguimiento tem-
poral, seguimiento no gaussiano, muestreo de den-
sidad de probabilidad, características geométricas
estables y robustas, robots móviles.

1 Introducción

La obtención de características estables y robustas
del entorno en un robot móvil es el paso previo
para una posterior extracción autónoma de mapas
del entorno, localización en el mismo o navegación

de una localización a otra [11]. Las características
se suelen extraer del entorno a partir de sensores
de ultrasonidos, elementos estándar de captación
de información en la robótica móvil. Estos sen-
sores se utilizan normalmente en anillos de 12 o
24 transductores distribuidos de forma equidistante
alrededor del robot.

La popularidad del sonar se debe fundamental-
mente a que se trata de un sensor de muy bajo coste,
su consumo es muy pequeño y el procesamiento
que se realiza a su señal es muy sencillo, haciendo
posible una respuesta casi inmediata y permitiendo
una reacción rápida del robot.

Sin embargo, frente a estas ventajas, el sonar
tiene como principal inconveniente el elevado nivel
de ruido e incertidumbre presente en sus lecturas,
debido a diversos factores [7].

Existe una amplia colección de trabajos en los
que se proponen métodos para filtrar los resultados
obtenidos por estos sensores y obtener característi-
cas geométricas elementales [3, 1, 12]. Sin embar-
go las características obtenidas en todos ellos son
muy locales, como aristas, esquinas o segmentos, y
esta propia localidad hace que sean muy sensibles
al ruido, poco robustas y poco estables. Esto último
se acentúa en entornos dinámicos y variables, del
tipo en los que suelen evolucionar estos robots.

Frente a este planteamiento local aparece como
alternativa la utilización de enfoques bayesianos en
los que se va acumulando en el tiempo la evidencia
asociada a la característica. Aunque este enfoque
ha sido aplicado con éxito desde los primeros mo-
mentos de investigación en el campo de la robóti-



Figura 1: Características topológicas usadas en el
trabajo: pasillos y finales de pasillo.

ca móvil [4], es ahora cuando se ha despertado un
gran interés en su uso para aplicaciones de mayor
alcance [14, 2, 5, 15, 10]. En esta línea, nues-
tro trabajo se basa en características topológicas
de más alto nivel, como son pasillos o finales de
pasillo (ver figura 1). Estas características se ex-
traen de los datos del sonar utilizando un enfoque
bayesiano que presentamos en la siguiente sección.
Esta metodología es genérica y permite ser aplica-
da a otro tipo de características topológicas, como
conexiones entre pasillos, etc.

En concreto, el núcleo de la propuesta se basa
en la utilización de técnicas iterativas de muestreo
para estimar la densidad a posteriori de estas car-
acterísticas topológicas. Estas técnicas permiten
representar la densidad de probabilidad de forma
explícita, mediante un conjunto(m1, m2, . . . , mN)

de muestras extraídas de dicha función de probabi-
lidad. Para obtener estas muestras, utilizaremos el
algoritmo CONDENSATION[9], una versión del
algoritmo de rechazo[13] aplicada al muestreo de
distribuciones a posteriori. Presentamos este algo-
ritmo en la sección 3. En la sección 4 formulamos
en detalle el modelo dinámico del sistema y el mo-
delo de verosimilitud. Por último, en el apartado 5
analizamos los resultados de aplicar este enfoque
a la detección de características obtenidas por el
sonar en entornos con ruidosos y con abundante
variabilidad, comprobando que las características
son estables y robustas.

2 Técnicas para la estimación
bayesiana temporal

Un problema estándar en reconocimiento estadísti-
co de patrones es encontrar un objeto parametrizado
con el vectorx con una distribución de probabilidad

Figura 2: Estimación bayesiana temporal.

a priorip(x) utilizando unos datosz [6]. Aplicando
este modelo genérico al problema que tratamos en
el artículo, el vectorx representa la parametrización
de una característica a buscar en el entorno (pasillo,
final de pasillo, etc.) y los datosz representan las
lecturas del sonar.

Para estimarx a partir dez es necesario cono-
cer la distribución condicionalp(z|x) que mide la
verosimilitudde que unas lecturasz correspondan
a un hipotético objetox. La densidad a posteriori
p(x|z) representa todo el conocimiento sobrex que
puede ser deducido a partir de los datos obtenidos.
Esta densidad se calcula utilizando la regla de bayes

p(x|z) = αp(z|x)p(x) (1)

dondeα es una constante de normalización inde-
pendiente dex.

2.1 Estimación bayesiana temporal

La versión dinámica del planteamiento bayesiano
supone que tenemos una secuencia det−1 lecturas
en el tiempozt−1 = (z1, z2, . . . , zt−1) que han si-
do producidas por una evolución del objetox, cuya
historia denotamos porxt−1 = (x1, x2, . . . , xt−1).
La dinámica de dicho objeto ha sido producida
por una secuencia de acciones también conocidas
at−1 = (a1, a2, . . . , at−1) (en nuestro caso cada
accióna será un valor de velocidad linealv y an-
gularω del robot móvil). La figura 2.1 representa
gráficamente el proceso.

Para realizar una estimación temporal debemos
formular el modelo dinámico del sistema y el mo-
delo de medida. En los siguientes subapartados
presentamos las restricciones generales que deben
cumplir ambos y en la sección 4 detallaremos su
expresión para el caso del seguimiento de carac-
terísticas del entorno a partir de datos del sonar.

2.1.1 Modelo dinámico

El modelo dinámico proporciona una expresión de
la probabilidad de un determinado estado a partir



de una secuencia de estados y acciones previas

p(xt |xt−1, at−1). (2)

Asumimos que este modelo dinámico cumple la
condición de Markov

p(xt |xt−1, at−1) = p(xt |xt−1, at−1), (3)

esto es que el nuevo estado depende únicamente del
estado y de la acción anterior. Asumimos también
que este modelo es estacionario, esto es que no de-
pende del instante de tiempo, por lo que deberemos
formular más adelante la expresiónp(x′|x, a).

2.1.2 Medidas

Suponemos que las observacioneszt son con re-
specto al proceso dinámico, lo que se expresa pro-
babilísticamente como

p(zt−1, xt |xt−1, at−1) =
p(xt |xt−1, at−1)p(zt−1|xt−1, at−1). (4)

También suponemos que son independientes entre
si,

p(zt−1|xt−1, at−1) =
t−1∏
i=1

p(zi |xi, ai), (5)

y que la observación únicamente depende del esta-
do, y no de la acción realizada

p(zi |xi, ai) = p(zi |xi). (6)

Suponemos, por último, que este modelo también
es estacionario y que no depende del instante de
tiempo, quedando una densidad de probabilidad
p(z|x) que define la verosimilitud de unas lecturas
dado una hipotética característica del entorno y que
detallaremos más adelante.

2.1.3 Propagación de la probabilidad a poste-
riori

Asumiendo las consideraciones anteriores, la
propagación de la probabilidad a posteriori en los
modelos de propagación bayesiana temporal viene
dada por

p(xt |zt , at ) = αtp(zt |xt )p(xt |zt−1, at−1), (7)

siendo

p(xt |zt−1, at−1) =∫
xt−1

p(xt |xt−1, at−1)p(xt−1|zt−1, at−1). (8)

Estas expresiones son el equivalente temporal a
la regla de Bayes y determina de forma iterativa la
distribución de probabilidad a posteriori en función
de la última lectura del sensorzt−1, la última acción
at−1, el modelo dinámicop(x′|x, a), el modelo de
sensorp(z|x) y la probabilidad a posteriori efectiva
anterior.

El problema de estimar esta densidad a posteriori
se ha venido resolviendo usualmente mediante el
filtro de Kalman o mediante las redes bayesianas
temporales.

2.2 Filtro de Kalman

El filtro de Kalman se ha usado con gran éxito para
realizar una estimación temporal en los casos en que
x es un vector en un espacio de parámetros contin-
uo y la verosimilitudp(z|x) tiene una distribución
gaussiana. Este filtro estima de forma iterativa la
media y la varianza de lasx en cada instante de
tiempo y esto sirve para caracterizar perfectamente
la distribuciónp(x|z).

La aplicación del filtro de Kalman al seguimien-
to de características del entorno es problemática,
debido fundamentalmente al problema delalias-
ing del sensorque provoca que distintas configura-
ciones del entornox produzcan parecidas lecturas
del sensorz. Esto hace que la densidadp(z|x) sea
mucho más complicada que una gaussiana, sien-
do en muchas ocasiones multimodal. Los entornos
dinámicos y el ruido en las lecturas tampoco son
bien soportados por esta técnica.

2.3 Redes bayesianas temporales

Las redes bayesianas temporales se utilizan como
una alternativa al filtro de Kalman, ya que permiten
representar distribuciones de densidad arbitrarias.
Para representar la distribuciónp(x|z) se discretiza



el espacio de parámetrosX en un conjunto de esta-
dos y se utiliza la regla de bayes para propagar sus
probabilidades.

Si llamamossi a cada uno de los estados que
se definen enX, y suponemos que en el instantet

se ha realizado la lecturazt después de realizar la
acciónat , las probabilidades de los estadossi se
actualizan iterando la expresión

p(si)← p(zt |si)
∑
sj∈X

p(si |sj , at−1)p(sj ) (9)

para todos loss ∈ X. Después de actualizar las
probabilidades asociadas a cada uno de los estados,
éstas se normalizan para asegurar que

∑
p(si) = 1. (10)

El problema fundamental de las redes bayesianas
es la necesidad de discretizar el espacio de
parámetros, lo que añade incertidumbre e intro-
duce una complejidad espacial (y temporal al re-
alizar la propagación) exponencial con el número
de parámetros.

3 Estimación por muestreo de
la densidad a posteriori

Resumiendo el problema planteado en la sección
anterior, las redes bayesianas permiten estimar
probabilidades con distribuciones de densidad arbi-
traria, a costa de discretizar el espacio de parámet-
ros que definen las características que estamos sigu-
iendo, mientras que el filtro de Kalman, por otra
parte, permite tratar parámetros continuos, pero
únicamente es capaz de representar distribuciones
gaussianas.

La solución que proponemos consiste en realizar
unmuestreode la distribución a posteriori mediante
el algoritmo CONDENSATION [9]. Este muestreo
proporciona un conjunto estable de estimaciones
(m1, m2, . . . , m2) de la característica a detectarX,
junto con las probabilidades asociadas a cada mues-
tra. Las muestras representan de forma fiable la
probabilidad a posteriorip(xt |zt , at ).

3.1 Algoritmo CONDENSATION

El algoritmo CONDENSATION proporciona una
representación explícita de la densidad a posteriori
mediante un conjunto deN muestras(m1, . . . , mN)

y sus probabilidades asociadas(π1, . . . , πN). Es-
tas muestras se generan en cada instante de tiempo
a partir de las muestras del instante anterior y de
las nuevas mediciones del entorno (zt ) y las nuevas
acciones recién ejecutadas por el robot (at ).

Inicialmente, el conjunto de muestras se dis-
tribuye uniformemente en el espacio de parámet-
rosX. Posteriormente, en cada instante de tiempo,
se actualizan lasN muestras de la siguiente for-
ma. Se escoge una muestrami con probabilidad
πi a partir del conjunto de muestras anteriores. Es-
ta muestra es una muestra correcta de la distribu-
ción p(xt−1|zt−1, at−1). A partir de ella se real-
iza una proyección del modelo del sistema según
la acciónat realizada por el mismo, obteniendo la
nueva muestram′i = p(xt |xt−1 = mi, at ). Por
último, como probabilidad asociada ami se cal-
cula su verosimilitud con las lecturas realizadas,
mediante el modelo de probabilidad del sensor,
πi = p(zt |xt = mi).

4 Modelo de movimiento y de
sensor

Para aplicar cualquier propagación temporal es
necesario formular correctamente tanto el modelo
de acción del sistema como el modelo del sensor.

4.1 Modelo dinámico del robot

Esta sección describe las ecuaciones de movimien-
to fundamentales de un robotsynchro-drive, mod-
elando su posiciónx(t), y(t) y su orientaciónθ(t)

mediante las siguientes ecuaciones

θ(tn) = θ(t0)+
∫ tn

t0

ω(t)dt (11)

x(tn) = x(t0)+
∫ tn

t0

v(t) cosθ(t)dt (12)

y(tn) = y(t0)+
∫ tn

t0

v(t) sinθ(t)dt (13)



Figura 3: Simulación de las lecturas de un anillo
de sensores de ultrasonidos.

Las ecuaciones anteriores pueden simplificarse
si se asume que el robot se mueve de forma discre-
ta, con intervalos de control de tiempo4t en los
que la velocidad lineal esvt y la angularωt . Es-
ta suposición es asumible cuando los intervalos de
muestreo de las velocidades y los datos del sonar no
es demasiado grande en comparación con la veloci-
dad del móvil. En nuestro caso, se han realizado
todas las pruebas con el móvil simulado movién-
dose a 25 cm/s y se han tomado lecturas cada 0.25
segundos.

La generación de muestras dep(xt+1|xt =
x, at = a) es directa a partir del modelo dinámico
anterior. Sólo hay que aplicar el cambio de posición
y orientación del robot sufrido tras sus movimientos
vt y ωt a los parámetrosx que definen la caracterís-
ticas. Además introducimos en la distribución un
ruido gaussiano para modelar la incertidumbre en
la posición real del robot. Este ruido gaussiano es
fundamental a la hora de dotar al modelo de ro-
bustez.

4.2 Modelo del sensor

El modelo del sensor nos proporciona la verosimil-
itud de unas lecturasz obtenidas en una hipotéti-
ca configuración del entornox. Las lecturasz
son distancias a los obstáculos más próximos en
la dirección definida por los sensores de ultra-
sonidos distribuidos alrededor del robot. En nue-
stros experimentos hemos utilizado una configu-
ración de 24 sensores simulados, con lo quez =

(l1, l2, . . . , l24).
El enfoque para el cálculo de la verosimilitud ha

sido similar a las propuestas dereconocimiento a
partir de síntesis[8]. Se ha construido un modelo
realista del sensor de ultrasonidos, capaz de simu-
lar correctamente la mayor parte de características
de las lecturas reales, incluyendo las que han si-
do despreciadas hasta el momento como fuentes
de error, como los múltiples rebotes. Estos errores
no pueden modelarse correctamente suponiendo un
modelo gaussiano del ruido.

Para implementar el modelo se ha realizado una
modificación del clásico algoritmo de trazado de
rayos, adaptándolo a superficies 2D y al cálculo
de las distancias de alcance [7]. Un ejemplo del
resultado del algoritmo de simulación puede verse
en la figura 3.

Para calcular la verosimilitudp(z|x) se simulan
hipotéticas lecturas obtenidas por la característica
en la configuraciónx y se comparan con las lecturas
reales, utilizando una medida de distancia.

Formalmente, la función de verosimilitud se ex-
presa como

p(z = (l1, l2, . . . , l24)|x) = e−(d(lr ,ls)2/σ2), (14)

siendolr las lecturas reales del sonar yls las lecturas
simuladas producidas por la característicax. En
los experimentos posteriores, la funciónd se ha
implementado como una distancia euclídea entre
las posiciones finales de las lecturas.

5 Resultados

Para comprobar la técnica propuesta se han realiza-
do una serie de experimentos en los entornos sim-
ulados que aparecen en la figura 4. En todos los
experimentos el robot se mueve evitando obstácu-
los a una velocidad de 25 cm/s y realiza una lectura
de sensores cada 0.25 segundos. Cada vez que se
realiza una lectura se ejecuta un paso del algoritmo
CONDENSATION. La velocidad del algoritmo es
aceptable, funcionando a 1/4 del tiempo real con
N = 300 muestras en un procesador Pentium II.
Futuras optimizaciones del código harán posible la
ejecución del algoritmo en tiempo real.

En los siguientes apartados veremos ejemplos
del funcionamiento del algoritmo en distintos ins-
tantes de tiempo. Dibujaremos las muestras gene-



Figura 4: Algunos de los entornos de prueba en los que se han realizado los experimentos. El entorno 1
consiste en un pasillo con dos obstáculos y el 2 un pasillo con múltiples puertas.

radas por el algoritmo sobre el entorno real, y cada
muestra tendrá un tono de gris proporcional a su
probabilidad.

5.1 Inicialización

En la figura 5 se puede observar el proceso de ini-
cialización del conjunto de muestras de la carac-
terísticapasillo. Recordemos que cuanto más oscu-
ra es la muestra mayor probabilidad asociada tiene.
El número de muestras utilizadas esN = 300. El
tiempo de una instantánea a otra es de 1 segundo.

5.2 Seguimiento de pasillos con obstá-
culos

En la figura 6 se puede ver la continuación de la
situación anterior. Una vez centrado el conjunto de
muestras alrededor del pasillo real todas las mues-
tras bajan en verosimilitud al pasar el robot frente
a un obstáculo (instantánea 8). En la instantánea
9, el ruido gaussiano del modelo de movimiento
genera algunas muestras de pasillos más cercanos
al obstáculo, pero la media de la distribución no
cambia de forma sensible. En las instantáneas 10
y 11 el robot ha superado el obstáculo, vuelven a
realizarse lecturas del pasillo real y la distribución
se mueve otra vez hacia el pasillo real.

5.3 Seguimiento de finales de pasillos

En la figura 7 se comprueba el funcionamiento del
algoritmo siguiendo finales de pasillo en un entorno
complicado como el número 2. La dificultad de este

entorno se debe a que el robot no obtiene ninguna
lectura del pasillo cuando pasa frente a las puertas.
El número de muestras de este experimento es el
mismo que el anterior (N = 300). En la instantánea
1 se ven las muestras ya inicializadas. De la instan-
tánea 1 a la 9 elrobot pasa frente a diversas puertas,
con lo que las muestras han evolucionado según el
modelo dinámico del robot, sin ser reforzadas por
lecturas del sonar. Sin embargo, cuando el robot
vuelve a detectar el pasillo vemos como en las ins-
tantáneas 10 y 13 el algoritmo vuelve a reforzar las
muestras correctas.

6 Conclusiones

Se ha presentado la aplicación del algoritmo CON-
DENSATION al problema del seguimiento de car-
acterísticas topológicas a partir de datos de sensores
de ultrasonidos. Este algoritmo permite estimar
una distribución a posteriori arbitraria en un espa-
cio de parámetros continuo, resolviendo las defi-
ciencias de los métodos empleados usualmente co-
mo son el filtro de Kalman o las redes bayesianas
temporales.

Se han mostrado resultados experimentales re-
alizados sobre entornos simulados en los que se
comprueba la robustez y estabilidad de las carac-
terísticas extraídas.
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Figura 7: Seguimiento de finales de pasillo moviéndose el robot en el entorno 2.


